Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The water sorption and physical properties of freeze-dried β-cyclodextrin (BCD) and 2-hydroxypropyl-β-cyclodextrin (HBCD) were studied. The stability of the inclusion complexes of these cyclodextrins with different hydrophobic ingredients, such as myristic acid and α-terpineol, was investigated as a function of the storage time and water content of the systems. Besides increasing its solubility, BCD ring modification with hydroxypropyl groups conferred amorficity to the dehydrated matrices, and modified the sorption properties and their ability to form hydrates. Both ligands decreased BCD and HBCD water adsorption, in comparison with the pure cyclodextrins. The water adsorption data and glass transition values obtained are consistent with the displacement of water molecules from the inner cavity of the CDs when the ligand is included. Encapsulation of non-polar ligands of linear hydrocarbon chain, like myristic acid, was initially incomplete, depending on the ligand/CD ratio, and increased with the time of storage and water content. © 2011 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Influence of ligand structure and water interactions on the physical properties of β-cyclodextrins complexes
Autor:Dos Santos, C.; Buera, M.P.; Mazzobre, M.F.
Filiación:Departamento de Química Orgánica, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA, Buenos Aires, Argentina
Palabras clave:α-Terpineol; Freeze-dried complexes; Hydroxypropyl-β-cyclodextrin; Myristic acid; Physical properties; Water sorption; CdS; Freeze-dried complexes; Hydrocarbon chains; Inclusion complex; Inner cavities; Ligand structure; Myristic acid; Non-polar ligands; Sorption properties; Storage time; Transition values; Water adsorption; Water interactions; Water molecule; Water sorption; Adsorption; Cyclodextrins; Glass transition; Hydrates; Hydrocarbons; Ligands; Physical properties; Saturated fatty acids; Dewatering; 2 hydroxypropyl beta cyclodextrin; beta cyclodextrin derivative; myristic acid; terpineol; water; adsorption; chemical structure; complex formation; conference paper; encapsulation; glass transition temperature; solubility; time; water absorption; water content
Año:2012
Volumen:132
Número:4
Página de inicio:2030
Página de fin:2036
DOI: http://dx.doi.org/10.1016/j.foodchem.2011.12.044
Título revista:Food Chemistry
Título revista abreviado:Food Chem.
ISSN:03088146
CODEN:FOCHD
CAS:2 hydroxypropyl beta cyclodextrin, 94035-02-6; myristic acid, 1715-79-3, 544-63-8; terpineol, 8000-41-7, 98-55-5; water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03088146_v132_n4_p2030_DosSantos

Referencias:

  • Adams, A., Demyttenaere, J.C.R., De Kimpe, N., Biotransformation of (R)-(+)- and (S)-(-)-limonene to α-terpineol by Penicillium digitatum - Investigation of the culture conditions (2003) Food Chemistry, 80 (4), pp. 525-534. , DOI 10.1016/S0308-8146(02)00322-9, PII S0308814602003229
  • Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J., A review on the use of cyclodextrins in foods (2009) Food Hydrocolloids, 7, pp. 1631-1640
  • Astray, G., Mejuto, J.C., Morales, J., Rial-Otero, R., Simal-Gándara, J., Factors controlling flavours bindings constants to cyclodextrins and their applications in food (2010) Food Research International, 43, pp. 1212-1218
  • Becker, L.C., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klassen, C.D., Marks, J.G., Final report of the amended safety assessment of myristic acid and its salts and esters as used in cosmetics (2010) International Journal of Toxicology, 162 S, pp. 86S
  • Bhandari, B., D'Arcy, B., Young, G., Flavour retention during high temperature short time extrusion cooking process: A review (2001) International Journal of Food Science and Technology, 36 (5), pp. 453-461. , DOI 10.1046/j.1365-2621.2001.00495.x
  • Burdock, G.A., Carabin, I.G., Safety assessment of myristic acid as a food ingredient (2007) Food and Chemical Toxicology, 45 (4), pp. 517-529. , DOI 10.1016/j.fct.2006.10.009, PII S0278691506003012
  • Buvári-Barcza, Á., Barcza, L., Influence of the guests, the type and degree of substitution on inclusion complex formation of substituted-b-cyclodextrins (1999) Talanta, 49, pp. 577-585
  • Chao, Y., Zhengyu, J., Xuehong, L., Evaluation of complex forming ability of hydroxypropyl-β- cyclodextrins (2008) Food Chemistry, 106, pp. 50-55
  • Chen, P.L., Long, Z., Ruan, R., Labuza, T.P., Nuclear magnetic resonance studies of water mobility in bread during storage (1997) LWT - Food Science and Technology, 30 (2), pp. 178-183
  • Choi, S.-G., Kerr, W.L., 1H NMR studies of molecular mobility in wheat starch (2003) Food Research International, 36 (4), pp. 341-348. , DOI 10.1016/S0963-9969(02)00225-9
  • Choi, M.J., Soonttitantawat, A., Nuchuchua, O., Min, S.G., Physical and light oxidative properties of eugenol encapsulated by molecular inclusion and emulsion-diffusion method (2009) Food Research International, 42, pp. 148-156
  • De Marco, I., Reverchon, E., Supercritical antisolvent micronization of cyclodextrins (2008) Powder Technology, 183 (2), pp. 239-246. , DOI 10.1016/j.powtec.2007.07.038, PII S0032591007003725
  • Espinosa, B., Hernández, J., Formación, Evaluación y Caracterización del complejo de Inclusión de Piroxicam/Hidroxipropil-β-Ciclodextrina (2005) Revista Mexicana de Ciencias Farmaceúticas, 36 (1), pp. 18-24
  • Fichan, I., Larroche, C., Gros, J.B., Water solubility, vapor pressure, and activity coefficients of terpenes and terpenoids (1999) Journal of Chemical Engineering Data, 44, pp. 56-62
  • (1996) Food Chemicals Codex (FCC) (4th Ed.), p. 297. , Food Chemicals Codex Washington, DC: National Academies Press
  • Fujiwara, T., Yamazaki, M., Tomizu, Y., Tokuoka, R., Tomita, K., Matsuo, T., The crystal structure of a new form of β-cyclodextrin water inclusion compound and thermal properties of β-cyclodextrin inclusion complexes (1983) Nippon Kagaku Kaishi, 181, p. 187
  • Gould, S., Scott, R.C., 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review (2005) Food and Chemical Toxicology, 43, pp. 1451-1459
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal of Research of the National Bureau of Standards, 81 A (1), pp. 89-96
  • Hassan, B., Gali-Muhtasib, H., Göransson, H., Larsson, R., Alpha terpineol: A potential anticancer agent which acts through suppressing NF-κB signalling (2010) Anticancer Research, 30 (6), pp. 1911-1919
  • Karathanos, V.T., Mourtzinos, I., Yannakopoulou, K., Andrikopoulos, N.K., Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin (2007) Food Chemistry, 101 (2), pp. 652-658. , DOI 10.1016/j.foodchem.2006.01.053, PII S030881460600135X
  • Lindner, K., Sänger, W., Crystal and molecular structure of cyclohepta-amylose dodecahydrate (1982) Carbohydrate Research, 99, pp. 103-115
  • Loftsson, T., Brewster, M.E., Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization (1996) Journal of Pharmaceutical Sciences, 85 (10), pp. 1017-1025. , DOI 10.1021/js950534b
  • Mazzobre, M.F., Elizalde, B.E., Dos Santos, C.I., Ponce Cevallos, P.A., Buera, M.P., Nanoencapsulation of food ingredients in cyclodextrins: Effect of water interactions and ligand structure (2010) Functional Food Product Development. Part I: New Technologies for Functional Food Manufacture, pp. 25-38. , J. Smith, E. Charter, Wiley Blackwell Oxford, England
  • Mazzobre, M.F., Dos Santos, C.I., Buera, M.P., Solubility and stability of β-Cyclodextrin-terpineol inclusion complex as affected by water (2011) Food Biophysics, , In Press
  • Mourtzinos, I., Kalogeropoulos, N., Papadakis, S.E., Konstantinou, K., Karatahanos, V.T., Encapsulation of nutraceutical monoterpenes in β-Cyclodextrin and modified starch (2008) Journal of Food Science, 73 (1), pp. 89-94
  • Nakai, Y., Yamamoto, K., Terada, K., Kajiyama, A., Sasaki, I., Properties of crystal water of α-, β- And γ-cyclodextrin (1986) Chemical & Pharmaceutical Bulletin, 34, pp. 2178-2182
  • O'Neil, J., (2006) Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (14th Ed.), , Whitehouse Station: Merck, Maryadele 9103
  • Pande, G., Shangraw, R., Characterization of β-cyclodextrin for direct compression tableting: II. The role of moisture in the compactibility of β-cyclodextrin (1995) International Journal of Pharmaceutics, 124, pp. 231-239
  • Piel, G., Piette, M., Barillaro, V., Castagne, D., Evrard, B., Delattre, L., Betamethasone-in-cyclodextrin-in-liposome: The effect of cyclodextrins on encapsulation efficiency and release kinetics (2006) International Journal of Pharmaceutics, 312, pp. 75-82
  • Pitarokili, D., Couladis, M., Petsikos-Panayotarou, N., Tzakou, O., Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece (2002) Journal of Agricultural and Food Chemistry, 50 (23), pp. 6688-6691. , DOI 10.1021/jf020422n
  • Ponce Cevallos, P.A., Buera, M.P., Elizalde, B.E., Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in b-cyclodextrin: Effect of interactions with water on complex stability (2010) Journal of Food Engineering, 99, pp. 70-75
  • Pralhad, T., Rajendrakumar, K., Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis (2004) Journal of Pharmaceutical and Biomedical Analysis, 34 (2), pp. 333-339. , DOI 10.1016/S0731-7085(03)00529-6
  • Regiert, M., Oxidation-stable linoleic acid by inclusion in α-cyclodextrin (2007) Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57, pp. 471-474
  • Steiner, T., Köllner, G., Ali, S., Zakim, D., Sänger, W., Crystalline β-cyclodextrin·12H 2O reversibly dehydrates to β-cyclodextrin (1992) Biochemical and Biophysical Research Communications, 188 (3), pp. 1060-1066
  • Szejtli, J., Introduction and general overview of cyclodextrin chemistry (1998) Chemical Reviews, 98 (5), pp. 1743-1753
  • Szente, L., Szejtli, J., Highly soluble cyclodextrin derivatives: Chemistry, properties, and trends in development (1999) Advanced Drug Delivery Reviews, 36 (1), pp. 17-28. , DOI 10.1016/S0169-409X(98)00092-1, PII S0169409X98000921
  • Szente, L., Szejtli, J., Cyclodextrins as food ingredients (2004) Trends in Food Science and Technology, 15 (3-4), pp. 137-142. , DOI 10.1016/j.tifs.2003.09.019, PII S0924224403002589
  • Timmermann Ernesto, O., Chirife Jorge, Physical state of water sorbed at high activities in starch in terms of the GAB sorption equation (1991) Journal of Food Engineering, 13 (3), pp. 171-179. , DOI 10.1016/0260-8774(91)90025-N
  • Tisserand, R., Balacs, T., (1995) Essential Oil Safety: A Guide for Health Care Professionals, , Churchill Livingstone New York
  • Tommasini, S., Raneri, D., Ficarra, R., Calabro, M.L., Stancanelli, R., Ficarra, P., Improvement in solubility and dissolution rate of flavonoids by complexation with β-cyclodextrin (2004) Journal of Pharmaceutical and Biomedical Analysis, 35 (2), pp. 379-387. , DOI 10.1016/S0731-7085(03)00647-2, PII S0731708503006472
  • Wang, J., Yanping, C., Baoguo, S., Chengtao, W., Characterization of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin (2011) Food Chemistry, 124, pp. 1069-1075
  • Williams III, R.O., Mahaguna, V., Sriwongjanya, M., Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin (1998) European Journal of Pharmaceutics and Biopharmaceutics, 46 (3), pp. 355-360. , DOI 10.1016/S0939-6411(98)00033-2, PII S0939641198000332
  • Winkler, R.G., Fioravanti, S., Ciccoti, G., Margheritis, C., Villa, M., Hydration of β-cyclodextrin: A molecular dynamics simulation study (2000) Journal of Computer-Aided Molecular Design, 14, pp. 659-667

Citas:

---------- APA ----------
Dos Santos, C., Buera, M.P. & Mazzobre, M.F. (2012) . Influence of ligand structure and water interactions on the physical properties of β-cyclodextrins complexes. Food Chemistry, 132(4), 2030-2036.
http://dx.doi.org/10.1016/j.foodchem.2011.12.044
---------- CHICAGO ----------
Dos Santos, C., Buera, M.P., Mazzobre, M.F. "Influence of ligand structure and water interactions on the physical properties of β-cyclodextrins complexes" . Food Chemistry 132, no. 4 (2012) : 2030-2036.
http://dx.doi.org/10.1016/j.foodchem.2011.12.044
---------- MLA ----------
Dos Santos, C., Buera, M.P., Mazzobre, M.F. "Influence of ligand structure and water interactions on the physical properties of β-cyclodextrins complexes" . Food Chemistry, vol. 132, no. 4, 2012, pp. 2030-2036.
http://dx.doi.org/10.1016/j.foodchem.2011.12.044
---------- VANCOUVER ----------
Dos Santos, C., Buera, M.P., Mazzobre, M.F. Influence of ligand structure and water interactions on the physical properties of β-cyclodextrins complexes. Food Chem. 2012;132(4):2030-2036.
http://dx.doi.org/10.1016/j.foodchem.2011.12.044