Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Non-enzymatic browning (NEB) development was studied in dehydrated potato at 70 °C. It was related to the macroscopic and molecular properties and to water-solid interactions over a wide range of water activities. Time resolved 1H NMR, thermal transitions and water sorption isotherms were evaluated. Although non-enzymatic browning could be detected in the glassy state; colour development was higher in the supercooled state. The reaction rate increased up to a water content of 26 g/100 g of solids (aw = 0.84) and then decreased at higher water contents, concomitantly with the increase of water proton mobility. The joint analyses of NEB kinetics, water sorption isotherm and proton relaxation behaviour made it evident that the point at which the reaction rate decreased, after a maximum value, could be related to the appearance of highly mobile water. The results obtained in this work indicate that the prediction of chemical reaction kinetics can be performed through the integrated analysis of water sorption, water and solids mobility and the physical state of the matrix. © 2007 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Non-enzymatic browning kinetics analysed through water-solids interactions and water mobility in dehydrated potato
Autor:Acevedo, N.C.; Schebor, C.; Buera, P.
Filiación:Departamentos de Industrias y de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Ciudad de Buenos Aires, Argentina
Palabras clave:Glass transition; Molecular mobility; Non-enzymatic browning; Water sorption properties; glass; water; article; chemical reaction kinetics; color; cooling; dehydration; glycation; isotherm; molecular interaction; physical phase; potato; prediction; proton nuclear magnetic resonance; proton transport; reaction analysis; solid; time; water content; water transport; Solanum tuberosum
Año:2008
Volumen:108
Número:3
Página de inicio:900
Página de fin:906
DOI: http://dx.doi.org/10.1016/j.foodchem.2007.11.057
Título revista:Food Chemistry
Título revista abreviado:Food Chem.
ISSN:03088146
CODEN:FOCHD
CAS:water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03088146_v108_n3_p900_Acevedo

Referencias:

  • Acevedo, N.C., Schebor, C., Buera, M.P., Water-solids interactions, matrix structural properties and the rate of non-enzymatic browning (2006) Journal of Food Engineering, 77, pp. 1108-1115
  • Acevedo, N.C., Briones, V., Buera, M.P., Aguilera, J.M., Microstructure affects the rate of chemical, physical and color (2008) Journal of Food Engineering, 85, pp. 222-231
  • Adamson, A.W., (1963), Wiley, Physical chemistry of surfaces, Wiley; Bell, L., Kinetics of non-enzymatic browning in amorphous solid systems: Distinguishing the effects of water activity and the glass transition (1995) International Food Research, 28, pp. 591-597
  • Buera, M., Chirife, J., Resnik, S.L., Wetzler, G., Nonenzymatic browning in liquid model systems of high water activity: Kinetics of colour changes due to Maillard's reaction between different single sugars and glycine and comparison with caramelization browning (1987) Journal of Food Science, 52, pp. 1063-1067
  • Buera, M., Resnik, S.L., Colorimetric measurements in a turbid medium: Hydrolized concentrated cheese whey (1989) Die Farbe, pp. 201-214
  • Chatakanonda, P., Dickinson, L.C., Chinachoti, P., Mobility and distribution of water in cassava and potato starches by 1H and 2H NMR (2003) Journal of Agricultural and Food Chemistry, 51, pp. 7445-7449
  • Chen, P.L., Long, Z., Ruan, R., Labuza, T.P., Nuclear magnetic resonance studies of water mobility in bread during storage (1997) Lebensmittel-Wissenschaft & Technologie, 30, pp. 178-183
  • Choi, S.G., Kerr, W.L., 1H NMR studies of molecular mobility in wheat starch (2003) Food Research International, 36, pp. 341-348
  • Favetto, G.J., Resnik, S.L., Chirife, J., Ferro Fontán, C., Statistical evaluation of water activity measurements obtained with the Vaisala Humicap humidity meter (1983) Journal of Food Science, 487, pp. 534-538
  • Fullerton, G.D., Cameron, I.L., Relaxation of biological tissues (1988) Biomedical Magnetic Resonance Imaging, pp. 115-155. , Wehrli F.W. (Ed), VCH Publishers, New York
  • Gil, A.M., Belton, P.S., Hills, B.P., Applications of NMR to food science (1996) Annual Reports on NMR Spectroscopy, 32, pp. 1-49
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal of Research of the National Bureau of Standards, 81, pp. 89-96
  • Kalichevsky, M.T., Blanshard, J.M.V., A study of the effect of water on the glass transition of 1:1 mixtures of amilopectin, casein ans gluten using DSC and DMTA (1992) Carbohydrate Polymers, 19, pp. 271-278
  • Kalichevisky, M.T., Blanshard, J.M.V., Tokarczuk, P.F., Effect of water and sugars on the glass transition of casein and sodium caseinate (1993) International Journal of Food Science and Technology, 28, pp. 139-151
  • Kalichevsky, M.T., Jaroszkiewicz, E.M., Ablett, S., Blanshard, J.M.V., Lillford, P.J., The glass transition of amylopectin measured by DSC, DMTA and NMR (1992) Carbohydrate Polymers, 18, pp. 77-88
  • Karmas, R., Buera, M., Karel, M., Effect of glass transition on rates of non-enzymatic browning in food systems (1992) Journal of Agricultural and Food Chemistry, 40, pp. 873-879
  • Kaymak-Ertekin, F., Gedik, A., Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes (2004) Lebensmittel-Wissenschaft & Technologie, 37, pp. 429-438
  • Kou, Y., Dickinson, L.C., Chinachoti, P., Mobility characterization of waxy corn starch using wide-line 1H Nuclear Magnetic Resonance (2000) Journal of Agricultural and Food Chemistry, 48, pp. 5489-5495
  • Labuza, T., Baiser, W., The kinetics of nonenzymatic browning (1992) Physical Chemistry of Foods, pp. 595-649. , Schwartzber H. (Ed), Marcel Dekker, New York
  • McLaughlin, C.P., Magee, T.R.A., The determination of sorption isotherm and the isosteric heats of sorption for potatoes (1998) Journal of Food Engineering, 35, pp. 267-280
  • McMinn, W.A.M., Magee, T.R.A., Thermodynamic properties of moisture sorption of potato (2003) Journal of Food Engineering, 60, pp. 157-165
  • Ruan, R., Wang, X., Chen, P.L., Fulcher, R.G., Pescheck, P., Chakrabarti, S., Study of water in dough using nuclear magnetic resonance (1999) Cereal Chemistry, 76, pp. 231-235
  • Rugraff, Y.L., Desbois, P., Le Botlan, D.J., Quantitative analysis of wheat starch-water suspensions by pulsed NMR spectroscopy measurements (1996) Carbohydrate Research, 295, pp. 185-194
  • Schebor, C., Buera, M.P., Karel, M., Chirife, J., Color formation due to non-enzymatic browning in amorphous, glassy, anhydrous, model systems (1999) Food Chemistry, 65, pp. 427-432
  • Slade, L., Levine, H., Glass transitions and water-food structure interactions (1995) Advance Food Nutritional Research, 38, pp. 103-269
  • Tang, H.R., Godward, J., Hills, B., The distribution of water in native starch granules-a multinuclear NMR study (2000) Carbohydrate Polymers, 43, pp. 375-387
  • Timmermman, E.O., Chirife, J., The physical state of water sorbed at high activities in starch in terms of the GAB sorption equation (1991) Journal of Food Engineering, 3, pp. 171-179
  • Van den Berg, C., Bruin, S., Water activity and its estimation in food systems (1981) Water Activity: Influence on Food Quality, pp. 147-177. , Rockland L.B., and Stewart G.F. (Eds), Academic Press, New York
  • Wang, N., Brennan, J.G., Moisture sorption isotherm characteristics of potatoes at four temperatures (1991) Journal of Food Engineering, 14, pp. 269-282

Citas:

---------- APA ----------
Acevedo, N.C., Schebor, C. & Buera, P. (2008) . Non-enzymatic browning kinetics analysed through water-solids interactions and water mobility in dehydrated potato. Food Chemistry, 108(3), 900-906.
http://dx.doi.org/10.1016/j.foodchem.2007.11.057
---------- CHICAGO ----------
Acevedo, N.C., Schebor, C., Buera, P. "Non-enzymatic browning kinetics analysed through water-solids interactions and water mobility in dehydrated potato" . Food Chemistry 108, no. 3 (2008) : 900-906.
http://dx.doi.org/10.1016/j.foodchem.2007.11.057
---------- MLA ----------
Acevedo, N.C., Schebor, C., Buera, P. "Non-enzymatic browning kinetics analysed through water-solids interactions and water mobility in dehydrated potato" . Food Chemistry, vol. 108, no. 3, 2008, pp. 900-906.
http://dx.doi.org/10.1016/j.foodchem.2007.11.057
---------- VANCOUVER ----------
Acevedo, N.C., Schebor, C., Buera, P. Non-enzymatic browning kinetics analysed through water-solids interactions and water mobility in dehydrated potato. Food Chem. 2008;108(3):900-906.
http://dx.doi.org/10.1016/j.foodchem.2007.11.057