Artículo

Rossi, J.D. "Tug-of-war games and PDEs" (2011) Proceedings of the Royal Society of Edinburgh Section A: Mathematics. 141(2):319-369
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We review some recent results concerning tug-of-war games and their relation to some well-known partial differential equations (PDEs). In particular, we will show that solutions to certain PDEs can be obtained as limits of values of tug-of-war games when the parameter that controls the length of the possible movements goes to zero. Since the equations being studied are nonlinear and are not in divergence form, we will make extensive use of the concept of viscosity solutions. © 2011 Royal Society of Edinburgh.

Registro:

Documento: Artículo
Título:Tug-of-war games and PDEs
Autor:Rossi, J.D.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428), Buenos Aires, Argentina
Año:2011
Volumen:141
Número:2
Página de inicio:319
Página de fin:369
DOI: http://dx.doi.org/10.1017/S0308210510000041
Título revista:Proceedings of the Royal Society of Edinburgh Section A: Mathematics
Título revista abreviado:Proc. R. Soc. Edinburgh Sect. A Math.
ISSN:03082105
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03082105_v141_n2_p319_Rossi

Referencias:

  • Armstrong, S.N., Smart, C.K., An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions (2010) Calc. Var. PDEs, 37, pp. 381-384
  • Aronsson, G., Extensions of functions satisfying Lipschitz conditions (1967) Ark. Mat., 6, pp. 551-561
  • Aronsson, G., Crandall, M.G., Juutinen, P., A tour of the theory of absolutely minimizing functions (2004) Bulletin of the American Mathematical Society, 41 (4), pp. 439-505. , DOI 10.1090/S0273-0979-04-01035-3, PII S0273097904010353
  • Barles, G., Fully nonlinear Neumann type conditions for second-order elliptic and parabolic equations (1993) J. Diff. Eqns, 106, pp. 90-106
  • Barles, G., Busca, J., Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term (2001) Communications in Partial Differential Equations, 26 (11-12), pp. 2323-2337
  • Barles, G., Souganidis, P.E., Convergence of approximation schemes for fully nonlinear second order equations (1991) Asymp. Analysis, 4, pp. 271-283
  • Barron, E.N., Evans, L.C., Jensen, R., The infinity Laplacian, Aronsson's equation and their generalizations (2008) Trans. Am. Math. Soc., 360, pp. 77-101
  • Bhattacharya, T., Di Benedetto, E., Manfredi, J., Limits as p → ∞ of Δpup = f and related extremal problems (1991) Rend. Sem. Mat. Univ. Polit. Torino, pp. 15-68. , Special Issue
  • Caffarelli, L., Cabre, X., Fully nonlinear elliptic equations (1995) Colloquium Publications, 43. , (Providence, RI: American Mathematical Society
  • Charro, F., Peral, I., Limit branch of solutions as p → ∞ for a family of sub-diffusive problems related to the p-Laplacian (2007) Commun. PDEs, 32, pp. 1965-1981
  • Charro, F., Garcia Azorero, J., Rossi, J.D., A mixed problem for the infinity Laplacian via tug-of-war games (2009) Calc. Var. PDEs, 34, pp. 307-320
  • Crandall, M.G., Ishii, H., Lions, P.L., User's guide to viscosity solutions of second order partial differential equations (1992) Bull. Am. Math. Soc., 27, pp. 1-67
  • Crandall, M.G., Gunnarsson, G., Wang, P., Uniqueness of ∞-harmonic functions and the eikonal equation (2007) Commun. PDEs, 32, pp. 1587-1615
  • Evans, L.C., Gangbo, W., Differential equations methods for the Monge-Kantorovich mass transfer problem (1999) Memoirs of the American Mathematical Society, 137. , (Providence, RI: American Mathematical Society
  • Garcia-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem (2007) Nonlinear Analysis, Theory, Methods and Applications, 66 (2), pp. 349-366. , DOI 10.1016/j.na.2005.11.030, PII S0362546X05009867
  • Hopf, E., Über den funktionalen insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung (1932) Math. Z., 34, pp. 194-233
  • Jensen, R., Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient (1993) Arch. Ration. Mech. Analysis, 123, pp. 51-74
  • Juutinen, P., Minimization problems for Lipschitz functions via viscosity solutions (1998) Annales Acad. Sci. Fenn. Math. Diss., 115, pp. 1-39
  • Juutinen, P., Absolutely minimizing Lipschitz extension on a metric space (2002) Annales Acad. Sci. Fenn. Math., 27, pp. 57-67
  • Juutinen, P., Principal eigenvalue of a badly degenerate operator and applications (2007) J. Diff. Eqns, 236, pp. 532-550
  • Juutinen, P., Lindqvist, P., On the higher eigenvalues for the ∞-eigenvalue problem (2005) Calc. Var. PDEs, 23, pp. 169-192
  • Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Ration. Mech. Analysis, 148, pp. 89-105
  • Juutinen, P., Lindqvist, P., Manfredi, J.J., On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation (2001) SIAM Journal on Mathematical Analysis, 33 (3), pp. 699-717. , PII S0036141000372179
  • Kohn, R.V., Serfaty, S., A deterministic-control-based approach to motion by curvature (2006) Commun. Pure Appl. Math., 59, pp. 344-407
  • Le Gruyer, E., On absolutely minimizing Lipschitz extensions and PDE Δ∞(u) = 0 (2007) NoDEA. Nonlin. Diff. Eqns Applic., 14, pp. 29-55
  • Le Gruyer, E., Archer, J.C., Harmonious extensions (1998) SIAM J. Math. Analysis, 29, pp. 279-292
  • McShane, E.J., Extension of range of functions (1934) Bull. Am. Math. Soc., 40, pp. 837-842
  • Maitra, A.P., Sudderth, W.D., Discrete gambling and stochastic games (1996) Applications of Mathematics, 32. , (Springer
  • Manfredi, J.J., Parviainen, M., Rossi, J.D., An asymptotic mean value characterization of p-harmonic functions (2010) Proc. Am. Math. Soc., 138, pp. 881-889
  • Manfredi, J.J., Parviainen, M., Rossi, J.D., Dynamic programming principle for tugof- war games with noise ESAIM: Control Optim. Calc. Variations, , DOI:10.1051/cocv/2010046
  • Manfredi, J.J., Parviainen, M., Rossi, J.D., An Asymptotic Mean Value Characterization for a Class of Nonlinear Parabolic Equations Related to Tug-of-War Games, , Preprint
  • Neyman, A., Sorin, S., (2003) Stochastic Games and Applications, , NATO Science Series C (Springer
  • Oberman, A.M., A convergent difference scheme for the infinity laplacian: Construction of absolutely minimizing Lipschitz extensions (2005) Mathematics of Computation, 74 (251), pp. 1217-1230. , DOI 10.1090/S0025-5718-04-01688-6, PII S0025571804016886
  • Peres, Y., Sheffield, S., Tug-of-war with noise: A game theoretic view of the p-Laplacian (2008) Duke Math. J., 145, pp. 91-120
  • Peres, Y., Schramm, O., Sheffield, S., Wilson, D., Tug-of-war and the infinity Laplacian (2009) J. Am. Math. Soc., 22, pp. 167-210
  • Peres, Y., Pete, G., Somersielle, S., (2008) Biased Tug-of-War, the Biased Infinity Laplacian and Comparison with Exponential Cones, , Preprint, arXiv: 0811.0208
  • Varadhan, S.R.S., Probability theory (2001) Courant Lecture Notes in Mathematics, 7. , (New York: Courant Institute of Mathemetical Sciences
  • Wang, P., A formula for smooth ∞-harmonic functions (2006) Pan-Amer. Math. J., 1, pp. 57-65

Citas:

---------- APA ----------
(2011) . Tug-of-war games and PDEs. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 141(2), 319-369.
http://dx.doi.org/10.1017/S0308210510000041
---------- CHICAGO ----------
Rossi, J.D. "Tug-of-war games and PDEs" . Proceedings of the Royal Society of Edinburgh Section A: Mathematics 141, no. 2 (2011) : 319-369.
http://dx.doi.org/10.1017/S0308210510000041
---------- MLA ----------
Rossi, J.D. "Tug-of-war games and PDEs" . Proceedings of the Royal Society of Edinburgh Section A: Mathematics, vol. 141, no. 2, 2011, pp. 319-369.
http://dx.doi.org/10.1017/S0308210510000041
---------- VANCOUVER ----------
Rossi, J.D. Tug-of-war games and PDEs. Proc. R. Soc. Edinburgh Sect. A Math. 2011;141(2):319-369.
http://dx.doi.org/10.1017/S0308210510000041