Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Drosophila melanogaster Meigen mutants for N-β-alanyldopamine (NBAD) metabolism have altered levels of NBAD, dopamine and other neurotransmitters. The ebony1 mutant strain has very low levels of NBAD and higher levels of dopamine, whereas the opposite situation is observed in the tan1 mutant. Dopamine is implicated in the control of movement, memory and arousal, as well as in the regulation of sleep and wakefulness in D. melanogaster. N-β-alanyldopamine, which is best known as a cuticle cross-linking agent, is also present in nervous tissue and has been proposed to promote locomotor activity in this fly. The daily locomotor activity and the sleep patterns of ebony1 and tan1 mutants are analyzed, and are compared with wild-type flies. The tan1 mutant shows reduced locomotor activity, whereas ebony1 shows higher levels of activity than wild-type flies, suggesting that NBAD does not promote locomotor activity. Both mutants spend less time asleep than wild-type flies during night-time; ebony shows more consolidated activity during night-time and increased sleep latency, whereas tan is unable to consolidate locomotor activity and sleep in either phase of the day. The daily level of NBAD-synthase activity is measured in vitro using wild-type and tan1 protein extracts, and the lowest NBAD synthesis is observed at the time of higher locomotor activity. The abnormalities in several parameters of the waking/sleep cycle indicate some dysfunction in the processes that regulates these behaviours in both mutants. © 2015 The Royal Entomological Society.

Registro:

Documento: Artículo
Título:N-β-alanyldopamine metabolism, locomotor activity and sleep in Drosophila melanogaster ebony and tan mutants
Autor:Rossi, F.A.; Bochicchio, P.A.; Quesada-Allué, L.A.; Pérez, M.M.
Filiación:Department of Biological Chemistry, FCEyN, University of Buenos Aires, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
Palabras clave:Dopamine; ebony; Locomotor activity; N-β-alanyldopamine; Sleep; tan; Wild-type; enzyme activity; fly; locomotion; metabolism; mutation; sleep; Drosophila melanogaster
Año:2015
Volumen:40
Número:2
Página de inicio:166
Página de fin:174
DOI: http://dx.doi.org/10.1111/phen.12100
Título revista:Physiological Entomology
Título revista abreviado:Physiol.Entomol.
ISSN:03076962
CODEN:PENTD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03076962_v40_n2_p166_Rossi

Referencias:

  • Andretic, R., Shaw, P.J., Essentials of sleep recordings in Drosophila: moving beyond sleep time (2005) Methods in Enzymology, 393, pp. 759-772
  • Andretic, R., Van Swinderen, B., Greenspan, R.J., Dopaminergic modulation of arousal in Drosophila (2005) Current Biology, 15, pp. 1165-1175
  • Andretic, R., Kim, Y.C., Jones, F.S., Drosophila D1 dopamine receptor mediates caffeine-induced arousal (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 20392-20397
  • Benzer, S., Behavioral mutants of Drosophila isolated by countercurrent distribution (1967) Proceedings of the National Academy of Sciences of the United States of America, 58, pp. 1112-1119
  • Borycz, J., Borycz, J.A., Loubani, M., tan and ebony genes regulate a novel pathway for transmitter metabolism at fly photoreceptor terminals (2002) Journal of Neuroscience, 22, pp. 10549-10557
  • Chen, A., Ng, F., Lebestky, T., Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster (2013) Genetics, 193, pp. 159-176
  • Claridge-Chang, A., Wijnen, F.N., Boothroyd, C., Circadian regulation of gene expression systems in the Drosophila head (2001) Neuron, 32, pp. 657-671
  • Cook, R., The extent of visual control in the courtship tracking of Drosophila melanogaster (1980) Biological Cybernetics, 37, pp. 41-51
  • Crocker, A., Sehgal, A., Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms (2008) Journal of Neuroscience, 28, pp. 9377-9385
  • Gruntenko, N., Chentsova, N.A., Bogomolova, E.V., The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to environmental stresses (2004) Archives of Insect Biochemistry and Physiology, 55, pp. 55-67
  • Heisenberg, M., Behavioral diagnostics; a way to analyze visual mutants of Drosophila (1972) Information Processing in the Visual Systems of Anthropods, pp. 265-268. , ed. by R. Wehner, Springer-Verlag, Germany
  • Helfrich-Förster, C., Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster-sex-specific differences suggest a different quality of activity (2000) Journal of Biological Rhythms, 15, pp. 135-154
  • Hendricks, J.C., Finn, S.M., Panckeri, K.A., Rest in Drosophila is a sleep-like state (2000) Neuron, 25, pp. 129-138
  • Ho, K.S., Sehgal, A., Drosophila melanogaster: an insect model for fundamental studies of sleep (2005) Methods in Enzymology, 393, pp. 772-793
  • Hodgetts, R.B., Konopka, R.J., Tyrosine and catecholamine metabolism in wild type Drosophila melanogaster and a mutant, ebony (1973) Journal of Insect Physiology, 19, pp. 1211-1220
  • Hopkins, T.L., Kramer, K.J., Insect cuticle sclerotization (1992) Annual Review of Entomology, 37, pp. 273-302
  • Hotta, Y., Benzer, S., Abnormal electroretinograms in visual mutants of Drosophila (1969) Nature, 222, pp. 354-356
  • Inoue, H., Yoshioka, T., Hotta, Y., Membrane-associated phospholipase C of Drosophila retina (1988) Journal of Biochemistry, 103, pp. 91-94
  • Konopka, R.J., Abnormal concentrations of dopamine in a Drosophila mutant (1972) Nature, 239, pp. 281-282
  • Kume, K., Kume, S., Park, S.K., Dopamine is a regulator of arousal in the fruit fly (2005) Journal of Neuroscience, 25, pp. 7377-7384
  • Kyriacou, C.P., Burnet, B., Connolly, K., The behavioral basis of overdominance in competitive mating success at the ebony locus of Drosophila melanogaster (1978) Animal Behaviour, 26, pp. 1195-1206
  • Mauchly, J.W., Significance test for sphericity of a normal n-variate distribution (1940) Annals of Mathematical Statistics, 11, pp. 204-220
  • Newby, L.M., Jackson, F.R., Drosophila ebony mutants have altered circadian activity rhythms but normal eclosion rhythms (1991) Journal of Neurogenetics, 7, pp. 85-101
  • Oh, Y., Jang, D., Sonn, J.Y., Histamine-HisCl1 receptor axis regulates wake-promoting signals in Drosophila melanogaster (2013) PLoS ONE, 8
  • Pérez, M., Castillo-Marin, N., Quesada-Allué, L.A., β-alanyl-dopamine synthase in D. melanogaster and Ceratitis capitata melanic mutants (1997) Drosophila Information Service, 80, pp. 39-41
  • Pérez, M.M., Wappner, P., Quesada-Allué, L.A., Catecholamine-β-alanyl ligase in the medfly Ceratitis capitata (2002) Insect Biochemistry and Molecular Biology, 32, pp. 617-625
  • Pérez, M.M., Schachter, J., Quesada-Allue, L.A., Constitutive activity of N-beta-alanyl-catecholamine ligase in insect brain (2004) Neuroscience Letters, 368, pp. 186-191
  • Pérez, M.M., Schachter, J., Berni, J., Quesada-Allué, L.A., The enzyme NBAD-synthase plays diverse roles during the life cycle of Drosophila melanogaster (2010) Journal of Insect Physiology, 56, pp. 8-13
  • Pérez, M.M., Sabio, G., Badaracco, A., Constitutive expression and enzymatic activity of Tan protein in brain and epidermis of Ceratitis capitata and of Drosophila melanogaster wild-type and tan mutants (2011) Insect Biochemistry and Molecular Biology, 41, pp. 653-659
  • Riemensperger, T., Isabel, G., Coulom, H., Behavioral consequences of dopamine deficiency in the Drosophila central nervous system (2011) Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 834-839
  • Rosbash, M., The implications of multiple circadian clock origins (2009) PLoS Biology, 7, pp. 421-425
  • Sandrelli, F., Costa, R., Kyriacou, C.P., Comparative analysis of circadian clock genes in insects (2008) Insect Molecular Biology, 17, pp. 447-463
  • Schachter, J., Pérez, M.M., Quesada-Allué, L., The role of N-b-alanyldopamine synthase in the innate immune response of two insects (2007) Journal of Insect Physiology, 53, pp. 1188-1197
  • Seugnet, L., Suzuki, Y., Vine, L., D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila (2008) Current Biology, 18, pp. 1110-1117
  • Seugnet, L., Suzuki, Y., Thimgan, M., Identifying sleep regulatory genes using a Drosophila model of insomnia (2009) Journal of Neuroscience, 29, pp. 7148-7157
  • Shaw, P.J., Cirelli, C., Greenspan, R.J., Correlates of sleep and waking in Drosophila melanogaster (2000) Science, 287, pp. 1834-1837
  • Simon, A.F., Daniels, R., Romero-Calderón, R., Drosophila vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin (2009) Genetics, 181, pp. 525-541
  • Suh, J., Jackson, F.R., Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity (2007) Neuron, 55, pp. 435-447
  • Tompkins, L., Gross, A.C., Hall, J.C., The role of female movement in the sexual behavior of Drosophila melanogaster (1982) Behavior Genetics, 12, pp. 295-307
  • True, J.R., Yeh, S.-D., Hovemann, B.T., Drosophila tan encodes a novel hydrolase required in pigmentation and vision (2005) PLOS Genetics, 1, pp. 551-562
  • Van Swinderen, B., Andretic, R., Dopamine in Drosophila: setting arousal thresholds in a miniature brain (2011) Proceedings of the Royal Society, 278, pp. 906-913
  • Walter, M.F., Zeineh, L.L., Black, B., Catecholamine metabolism and in vitro induction of premature cuticle melanization in wild type and pigmentation mutants of Drosophila melanogaster (1996) Archives of Insect Biochemistry and Physiology, 31, pp. 219-233
  • Wright, T.R.F., The genetics of biogenic amine metabolism, sclerotization and melanization in Drosophila melanogaster (1987) Advances in Genetics, 24, pp. 127-222
  • Wu, M.N., Koh, K., Yue, Z., A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila (2008) Sleep, 31, pp. 465-472
  • Yamasaki, N., Aso, Y., Tsukamoto, T., A convenient method for the preparation of N-β-alanyldopamine as substrate of phenol-oxidase (1990) Agricultural and Biological Chemistry, 54, pp. 833-836
  • Yuan, Q., Joiner, W.J., Sehgal, A., A sleep-promoting role for the Drosophila serotonin receptor 1A (2006) Current Biology, 16, pp. 1051-1062

Citas:

---------- APA ----------
Rossi, F.A., Bochicchio, P.A., Quesada-Allué, L.A. & Pérez, M.M. (2015) . N-β-alanyldopamine metabolism, locomotor activity and sleep in Drosophila melanogaster ebony and tan mutants. Physiological Entomology, 40(2), 166-174.
http://dx.doi.org/10.1111/phen.12100
---------- CHICAGO ----------
Rossi, F.A., Bochicchio, P.A., Quesada-Allué, L.A., Pérez, M.M. "N-β-alanyldopamine metabolism, locomotor activity and sleep in Drosophila melanogaster ebony and tan mutants" . Physiological Entomology 40, no. 2 (2015) : 166-174.
http://dx.doi.org/10.1111/phen.12100
---------- MLA ----------
Rossi, F.A., Bochicchio, P.A., Quesada-Allué, L.A., Pérez, M.M. "N-β-alanyldopamine metabolism, locomotor activity and sleep in Drosophila melanogaster ebony and tan mutants" . Physiological Entomology, vol. 40, no. 2, 2015, pp. 166-174.
http://dx.doi.org/10.1111/phen.12100
---------- VANCOUVER ----------
Rossi, F.A., Bochicchio, P.A., Quesada-Allué, L.A., Pérez, M.M. N-β-alanyldopamine metabolism, locomotor activity and sleep in Drosophila melanogaster ebony and tan mutants. Physiol.Entomol. 2015;40(2):166-174.
http://dx.doi.org/10.1111/phen.12100