Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Recently, it was proposed to study the complex physics of topological phases by an all optical implementation of a discrete-time quantum walk. The main novel ingredient proposed for this study is the use of non-linear parametric amplifiers in the network which could in turn be used to emulate intra-atomic interactions and thus analyze many-body effects in topological phases even when using light as the quantum walker. In this review, and as a first step towards the implementation of our scheme, we analyze the interplay between quantum walk lattice topology and spatial correlations of bi-photons produced by spontaneous parametric down-conversion. We also describe different detection methods suitable for our proposed experimental scheme. © 2016, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Quantum walk topology and spontaneous parametric down conversion
Autor:Puentes, G.
Filiación:Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Pabellón 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Quantum optics; Quantum walks; Spontaneous parametric down conversion; Topological phases; Complex networks; Light; Optical frequency conversion; Quantum optics; Topology; Detection methods; Experimental scheme; Lattice topology; Many-body effect; Quantum walk; Spatial correlations; Spontaneous parametric down conversion; Topological phasis; Optical parametric amplifiers
Año:2016
Volumen:48
Número:2
Página de inicio:1
Página de fin:11
DOI: http://dx.doi.org/10.1007/s11082-016-0410-8
Título revista:Optical and Quantum Electronics
Título revista abreviado:Opt Quantum Electron
ISSN:03068919
CODEN:OQELD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03068919_v48_n2_p1_Puentes

Referencias:

  • Agarwal, G., Pathak, P., Quantum random walk of the field in an externally driven cavity (2005) Phys. Rev. A, 72, pp. 033815-033821
  • Anderson, M.H., Observation of Bose-Einstein condensation in a dilute atomic vapor (1995) Science, 269, pp. 198-201
  • Bernevig, B., HgTe quantum wells (2006) Science, 314, pp. 1757-1761
  • Bouwmeester, D., Optical galton board (1999) Phys. Rev. A, 61, pp. 013410-013419
  • Bradley, C., Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions (1995) Phys. Rev. Lett., 75, pp. 1687-1691
  • Bromberg, Y., Quantum and classical correlations in waveguide lattices (2009) Phys. Rev. Lett., 102, pp. 253904-253908
  • Broomberg, Y., Hanbury Brown and Twiss inteferometry with interacting photons (2010) Nat. Photon., 4, pp. 663-730
  • Broome, M., Discrete single-photon quantum walks with tunable decoherence (2010) Phys. Rev. Lett., 104, pp. 153602-153606
  • Davis, Bose-Einstein condensation in a gas of sodium atoms (1995) Phys. Rev. Lett., 75, pp. 3969-3973
  • Do, B., Experimental realization of quantum quincux by use of linear optical elements (2005) J. Opt. Soc. Am. B, 22, pp. 499-504
  • Ermann, L., Paz, J.P., Saraceno, M., Decoherence induced by a chaotic environment: a quantum walk with complex coin (2006) Phys. Rev. A, 73, pp. 012302-012309
  • Godoy, S., Fujita, S., A quantum random walk model for tunneling diffusion in a 1D lattice. A quantum correction to Ficks law (1992) J. Chem. Phys., 97, pp. 5148-5154
  • Greiner, M., Mandel, O., Esslinger, T., Hänsch, T., Bloch, I., Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms (2002) Nature, 415, pp. 39-44
  • Hasan, M., Kane, C., Colloquium: topological insulators (2010) Rev. Mod. Phys., 82, pp. 3045-3067
  • Kane, C., Mele, E., Z 2 topological order and the quantum spin Hall effect (2005) Phys. Rev. Lett., 95, pp. 146802-146806
  • Karski, M., Quantum walk in position space with single optically trapped atoms (2009) Science, 325, pp. 174-177
  • Kitagawa, T., Rudner, M., Berg, E., Demler, E., Exploring topological phases with quantum walks (2010) Phys. Rev. A, 82, pp. 033429-033441
  • Kitagawa, T., Observation of topologically protected bound states in photonic quantum walks (2012) Nat. Commun., 3, pp. 882-889
  • Koening, M., Quantum spin Hall insulator state in HgTe quantum wells (2007) Science, 318, pp. 766-770
  • Li, H., Haldane, F., Entanglement spectrum as a generalization of entanglement entropy: indentification of topoligcal order in non-abelian fractional quantum Hall effect states (2008) Phys. Rev. Lett., 101, pp. 010504-010508
  • Mohseni, M., Rebentrost, P., Lloyd, S., Aspure-Guzik, A., Environment-assisted quantum walks in photosynthetic energy transfer (2008) J. Chem. Phys., 129, p. 174106
  • Moore, J.E., The birth of topological insulators (2010) Nature, 464, pp. 194-198
  • Moulieras, S., Lewenstein, M., Puentes, G., Entanglement engineering and topological protection by discrete-time quantum walks (2013) J. Phys. B, 46, pp. 104005-104016
  • Nielsen, M., Chuang, I., (2000) Quantum Computation and Quantum Information, , 1, Cambridge University Press, Cambridge
  • Oka, T., Interfaces of correlated electron systems: proposed mechanism for colossal electroresistance (2005) Phys. Rev. Lett., 95, pp. 137601-137604
  • Peruzzo, A., Quantum walk of correlated particles (2010) Science, 329, pp. 1500-1503
  • Preskill, J., Introduction to quantum computation and information, Lo, H.-K., Popescu, S., Spiller, T. (eds.) (World Scientific, Singapore, Hardcover 1998 Paperback 2000) (1998) arXiv:quant-ph/9712048
  • Puentes, G., Santillan, O., Zak Phase in Discrete-Time Quantum Walks, arxiv:quant-ph/1506.08100v2 (2015) 7 pages, , arxiv:quant-ph/1506.08100v2
  • (2014) G.: “Unraveling the physics of topological phases by quantum walks of light”, arxiv:quant-ph/1409, 1273, p. 10. , arxiv:quant-ph/1409.1273
  • Puentes, G., Hermosa, N., Torres, J.P., Weak measurements with orbital angular momentum pointer states (2012) Phys. Rev. Lett., 109, p. 040401
  • Qi, X., Fractional charge and quantized current in the quantum spin Hall state (2008) Nat. Phys., 4, pp. 273-276
  • Regensburger, A., Parity-time synthetic photonic lattices (2013) Nature, 488, pp. 167-171
  • Rudner, M., Topological transition in non-Hermitian quantum walk (2009) Phys. Rev. Lett., 102, pp. 065703-065707
  • Ryan, C., Experimental implementation of discrete-time quantum random walk on an NMR quantum information processor (2005) Phys. Rev. A, 72, pp. 062317-062325
  • Schmitz, H., Quantum walk of a trapped ion in phase space (2009) Phys. Rev. Lett., 103, pp. 090504-0905008
  • Schreiber, A., Photons walking the line: a quantum walk with adjustable coin operations (2010) Phys. Rev. Lett., 104, pp. 050502-050506
  • Schreiber, A., Decoherence and disorder in quantum walks: from ballistic spread to localization (2011) Phys. Rev. Lett., 106, pp. 180404-180408
  • Schreiber, A., A 2D quantum walk simulation of two-particle dynamics (2012) Science, 336, pp. 55-58
  • Skryabin, D.V., Bialanca, F., Bird, D., Benabid, F., Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas (2004) Phys. Rev. Lett., 93, pp. 143907-143911
  • Su, W., Schrieffer, J., Heeger, A., Solitons in polyacetylene (1979) Phys. Rev. Lett., 42, pp. 1698-1702
  • Thouless, D., Quantized Hall conductance in a two-dimensional periodic potential (1982) Phys. Rev. Lett., 49, pp. 405-409
  • Torma, P., Transitions in quantum networks (1998) Phys. Rev. Lett., 81, pp. 2185-2189
  • von Klitzing, K., New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance (1980) Phys. Rev. Lett., 45, pp. 494-498
  • Zahringer, F., Realization of a quantum walk with one and two trapped ions (2010) Phys. Rev. Lett., 104, pp. 100503-100507

Citas:

---------- APA ----------
(2016) . Quantum walk topology and spontaneous parametric down conversion. Optical and Quantum Electronics, 48(2), 1-11.
http://dx.doi.org/10.1007/s11082-016-0410-8
---------- CHICAGO ----------
Puentes, G. "Quantum walk topology and spontaneous parametric down conversion" . Optical and Quantum Electronics 48, no. 2 (2016) : 1-11.
http://dx.doi.org/10.1007/s11082-016-0410-8
---------- MLA ----------
Puentes, G. "Quantum walk topology and spontaneous parametric down conversion" . Optical and Quantum Electronics, vol. 48, no. 2, 2016, pp. 1-11.
http://dx.doi.org/10.1007/s11082-016-0410-8
---------- VANCOUVER ----------
Puentes, G. Quantum walk topology and spontaneous parametric down conversion. Opt Quantum Electron. 2016;48(2):1-11.
http://dx.doi.org/10.1007/s11082-016-0410-8