Parte de libro

Jares-Erijman, E.A.; Spagnuolo, C.; Giordano, L.; Etchehon, M.; Kawior, J.; Mañalich-Arana, M.V.; Bossi, M.; Lidke, D.S.; Post, J.N.; Vermeij, R.J.; Heintzmann, R.; Lidke, K.A.; Arndt-Jovin, D.J.; Jovin, T.M. "Novel (Bio)chemical and (Photo)physical probes for imaging living cells" (2005) Supramolecular Structure and Function 8:99-118
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

The living cell mediates its internal state and the exchange of substances and information with its environment primarily via protein-protein interactions. The spatio-temporal disposition of structural, catalytic, and regulatory proteins defines the nature and functional state of the cell. Signaling mechanisms, as a prominent example, occupy a central role in this process, leading to a set of canonical questions, challenges and strategies (Table 1). In applying fluorescence microscopy in cell biology to a particular system, one is faced with a multiplicity of molecules at every level of organization (external, membrane, cytoplasm). The elucidation of such an extensive degree of vertical and horizontal networking, extending into the downstream signaling cascades, requires imaging technology in addition to the classical biochemical and molecular biological methods based largely on classical "divide (separate) and conquer" protocols (Table 2). For example, the "orphan" (ligand-less) erbB2/HER2 receptor tyrosine kinase (RTK) is overexpressed and highly activated in a large fraction of breast tumors, forming characteristic homo- and heterodimers with three other members of this RTK family1. These are targets for the only anti-tumor immunotherapies in present clinical use, exemplified by the antibody specific for HER2, Herceptin2. Unfortunately, the modes of action of such agents are poorly understood. Thus in order to elucidate the repertoire of the RTKs under normal and pathological conditions one must evaluate their localization and molecular structural and functional state(s) in defined cell populations be it cell culture lines or primary patient-derived cells. The thermodynamic and kinetic complexity is evident from the minimal scheme defining the interplay between ligand binding conformational states (2) and association states (2) for a prototypic growth factor receptor (Figure 1). Although Table 2 cannot be regarded as comprehensive it emphasizes that in addition to established biochemical and genetic approaches physico-chemical techniques offer the versatility required for assessing molecular interactions in the cell. In particular fluorescence unites the features of great sensitivity and selectivity with high contrast even under conditions of low local molecular density i.e. concentration. © 2005 Springer Science + Business Media, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Novel (Bio)chemical and (Photo)physical probes for imaging living cells
Autor:Jares-Erijman, E.A.; Spagnuolo, C.; Giordano, L.; Etchehon, M.; Kawior, J.; Mañalich-Arana, M.V.; Bossi, M.; Lidke, D.S.; Post, J.N.; Vermeij, R.J.; Heintzmann, R.; Lidke, K.A.; Arndt-Jovin, D.J.; Jovin, T.M.
Filiación:Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
Año:2005
Página de inicio:99
Página de fin:118
DOI: http://dx.doi.org/10.1007/0-306-48662-8_6
Título revista:Supramolecular Structure and Function 8
Título revista abreviado:Supramolecular Struct. and Funct. 8
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03064866_v_n_p99_JaresErijman

Referencias:

  • Yarden, Y., Slikowski, M.X., Untangling the ErbB signalling network (2001) Nat. Rev. Mol. Cell Biol., 2, pp. 127-137
  • Clynes, R.A., Towers, T.L., Presta, L.G., Ravetch, J.V., Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets (2000) Nature Med., 6, pp. 443-446
  • Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., Cormier, M.J., Primary structure of the Aequorea-victoria green fluorescent protein (1992) Gene, 111, pp. 229-233
  • Zhang, J., Campbell, R.E., Ting, A.Y., Tsien, R.Y., Creating new fluorescent probes for cell biology (2002) Nat. Rev. Mol. Cell Biol., 3, pp. 906-918
  • Lippincott-Schwartz, J., Patterson, G.H., Development and use of fluorescent protein markers in living cells (2003) Science, 300, pp. 87-91
  • Miyawaki, A., Visualization of the spatial and temporal dynamics of intracellular signaling (2003) Dev. Cell, 4, pp. 295-305
  • Sato, M., Ozawa, T., Inukai, K., Asano, T., Umezawa, Y., Fluorescent indicators for imaging protein phosphorylation in single living cells (2002) Nat. Biotechnol., 20, pp. 287-294
  • Zacharias, D.A., Violin, J.D., Newton, A.C., Tsien, R.Y., Partitioning of lipidmodified monomeric GFPs into membrane microdomains of live cells (2002) Science, 296, pp. 913-916
  • Zeytun, A., Jeromin Scalettar, B.A., Waldo, G.S., Bradbury, A.R.M., Fluorobodies combine GFP fluorescence with the binding characteristics of antibodies (2003) Nat. Biotechnol., 21, pp. 1473-1479
  • Kurokawa, K., Mochizuki, N., Ohba, Y., Mizuno, H., Miyawaki, A., Matsuda, M., A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo (2001) J. Biol. Chem., 276, pp. 31305-31310
  • Wiedenmann, J., Schenk, A., Röcker, C., Girod, A., Spindler, K.-D., Nienhaus, G.U., A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmea quadricolor (Anthoza Actinaria) (2002) Proc. Nat. Acad. Sci. U.S.A., 99, pp. 11646-11651
  • Patterson, G.H., Lippincott-Schwartz, J., A photoactivatable GFP for selective photolabeling of proteins and cells (2002) Science, 297, pp. 1873-1877
  • Haker, A., Hendriks, J., Van Stokkum, I.H.M., Heberle, J., Hellingwerf, K.J., Crielaard, W., Genach, T., Two photocycles of photoactive yellow protein from Rhodobacter sphaeroides (2003) J. Biol. Chem., 278, pp. 8442-8451
  • Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., Miyawaki, A., A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications (2002) Nat. Biotechnol., 20, pp. 87-90
  • Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A., Tsien, R.Y., Reducing the environmental sensitivity of yellow fluorescent protein (2001) J. Biol. Chem., 276, pp. 29188-29194
  • Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., Tsien, R.Y., A monomeric red fluorescent protein (2002) Proc. Nat. Acad. Sci. U.S.A., 99, pp. 7877-7882
  • Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., Tsien, R.Y., Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin (1997) Nature, 388, pp. 882-887
  • Jares-Erijman, E.A., Jovin, T.M., FRET imaging (2003) Nat. Biotechnol., 21, pp. 1387-1395
  • Clegg, R.M., Fluorescence resonance energy transfer (1995) Curr. Opin. Biotechn., 6, pp. 103-110
  • Clegg, R.M., Gadella, Jr.T.W.J., Jovin, T.M., Lifetime-resolved fluorescence imaging (1994) Proc. SPIE, 2137, pp. 105-118
  • Patterson, G.H., Piston, D.W., Barisas, B.G., Forster distances between green fluorescent protein pairs (2000) Anal. Biochem., 284, pp. 438-440
  • Hu, C.D., Kerppola, T.K., Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis (2003) Nat. Biotechnol., 21, pp. 539-545
  • Ozawa, T., Umezawa, Y., Peptide assemblies in living cells. Methods for detecting protein-protein interactions (2002) Supramol. Chem., 14, pp. 271-280
  • Marriott, G., Parker, I., (2003) Methods Enzymol Biophotonics Part B., 361. , Academic Press San Diego CA
  • Riven, I., Kalmanzon, E., Segev, L., Reuveny, E., Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed (2003) Neuron, 38, pp. 225-235
  • Griffin, B.A., Adams, S.R., Jones, J., Tsien, R.Y., Fluorescent labeling of recombinant proteins in living cells with FlAsH (2000) Methods Enzymol., 327, pp. 565-578
  • Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Sosinsky, G.E., Ellisman, M.H., Multicolor and electron microscopic imaging of connexin trafficking (2002) Science, 296, pp. 503-507
  • Falk, M.M., Genetic tags for labelling live cells: Gap junctions and beyond (2002) Trends Cell Biol., 12, pp. 399-404
  • Stroffekova, K., Proenza, C., Beam, K.G., The protein-labelling reagent F1AsHEDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins (2001) Eur. J. Physiol., 442, pp. 859-866
  • Giordano, L., Jovin, T.M., Irie, M., Jares-Erijman, E.A., Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET) (2002) J. Am. Chem. Soc., 124, pp. 7481-7489
  • Song, L., Jares-Erijman, E.A., Jovin, T.M., A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET) (2002) J. Photochem. Photobiol. A, 150, pp. 177-185
  • Clayton, A.H.A., Hanley, Q.S., Arndt-Jovin, D.J., Subramaniam, V., Jovin, T.M., Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM) (2002) Biophys. J., 83, pp. 1631-1649
  • Lidke, D.S., Nagy, P., Barisas, B.G., Heintzmann, R., Post, J.N., Lidke, K.A., Clayton, A.H.A., Jovin, T.M., Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET) (2003) Biochem. Soc. Trans., 31, pp. 1020-1027
  • Schlessinger, J., Ligand-induced receptor-mediated dimerization and activation of EGF receptor (2002) Cell, 110, pp. 669-672
  • Gadella Jr., T.W.J., Jovin, T.M., Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy: A stereochemical model for tyrosine kinase receptor activation (1995) J. Cell Biol., 129, pp. 1543-1558
  • Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Bruchez, M.P., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots (2003) Nat Biotechnol., 21, pp. 41-46
  • Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M., Long-term multiple color imaging of live cells using quantum dot bioconjugates (2003) Nat. Biotechnol., 21, pp. 47-51
  • Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., Webb, W.W., Water-soluble quantum dots for multiphoton fluorescence imaging in vivo (2003) Science, 300, pp. 1434-1436
  • Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H., Jares- Erijman, E.A., Jovin, T.M., Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction (2004) Nat. Biotechnol., , in press DOI: 10.1038/Nbt1929
  • Medintz, I.L., Trammell, S.A., Mattoussi, H., Mauro, J.M., Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor (2004) J. Am. Chem. Soc., 126, pp. 30-31
  • Clapp, A.R., Medintz, I.L., Mauro, J.M., Fisher, B.R., Bawendi, M.G., Mattoussi, H., Fluorescence Resonance Energy Transfer between Quantum Dot donors and dye-labeled protein acceptors (2004) J. Am. Chem. Soc., 126, pp. 301-310
  • Brock, R., Jovin, T., Quantitative image analysis of cellular protein translocation induced by magnetic microspheres: Application to the EGF receptor (2003) Cytometry A, 52 A, pp. 1-11
  • Brock, R., Jovin, T.M., Heterogeneity of signal transduction at the subcellular level: Microsphere-based focal EGF receptor activation and stimulation of Shc translocation (2001) J. Cell Sci., 114, pp. 2437-2447
  • Verveer, P.J., Wouters, F.S., Reynolds, A.R., Bastiaens, P.I.H., Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane (2000) Science, 290, pp. 1567-1570

Citas:

---------- APA ----------
Jares-Erijman, E.A., Spagnuolo, C., Giordano, L., Etchehon, M., Kawior, J., Mañalich-Arana, M.V., Bossi, M.,..., Jovin, T.M. (2005) . Novel (Bio)chemical and (Photo)physical probes for imaging living cells. Supramolecular Structure and Function 8, 99-118.
http://dx.doi.org/10.1007/0-306-48662-8_6
---------- CHICAGO ----------
Jares-Erijman, E.A., Spagnuolo, C., Giordano, L., Etchehon, M., Kawior, J., Mañalich-Arana, M.V., et al. "Novel (Bio)chemical and (Photo)physical probes for imaging living cells" . Supramolecular Structure and Function 8 (2005) : 99-118.
http://dx.doi.org/10.1007/0-306-48662-8_6
---------- MLA ----------
Jares-Erijman, E.A., Spagnuolo, C., Giordano, L., Etchehon, M., Kawior, J., Mañalich-Arana, M.V., et al. "Novel (Bio)chemical and (Photo)physical probes for imaging living cells" . Supramolecular Structure and Function 8, 2005, pp. 99-118.
http://dx.doi.org/10.1007/0-306-48662-8_6
---------- VANCOUVER ----------
Jares-Erijman, E.A., Spagnuolo, C., Giordano, L., Etchehon, M., Kawior, J., Mañalich-Arana, M.V., et al. Novel (Bio)chemical and (Photo)physical probes for imaging living cells. Supramolecular Struct. and Funct. 8. 2005:99-118.
http://dx.doi.org/10.1007/0-306-48662-8_6