Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Environmental temperature is an abiotic factor with great influence on biological processes of living beings. Jensen's inequality states that for non-lineal processes, such as most biological phenomena, the effects of thermal fluctuations cannot be predicted from mean constant temperatures. We studied the effect of daily temperature fluctuation (DTF) on Rhodnius prolixus, a model organism in insect physiology, and an important vector of Chagas disease. We measured development time from egg to adult, fecundity, fertility, body mass reduction rate (indirect measurement of nutrient consumption rates) and survival after a single blood meal. Insects were reared at constant temperature (24 °C), or with a DTF (17–32 °C; mean = 24 °C). Taking into account Jensen's inequality as well as the species tropical distribution, we predict that living in a variable thermal environment will have higher costs than inhabiting a stable one. Development time and fertility were not affected by DTF. However, fecundity was lower in females reared at DTF than at constant temperature, and males had higher body mass reduction rate and lower survival in the DTF regime, suggesting higher costs associated to fluctuating thermal environments. At a population and epidemiological level, higher energetic costs would imply an increase in nutrient consumption rate, biting frequency, and, consequently increasing disease transmission from infected insects. On the contrary, lower fecundity could be associated with a decrease in population growth. This knowledge will not only provide basic information to the field of insect ecophysiology, but also could be a useful background to develop population and disease transmission models. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus
Autor:Rolandi, C.; Schilman, P.E.
Filiación:Laboratorio de Eco-fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Argentina
Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-UBA, Argentina
Palabras clave:Chagas disease; Constant temperature; Fluctuating temperature; Phenotypic plasticity; Rhodnius prolixus; Survival time; adult; adulthood; animal experiment; Article; blood; body mass; body weight loss; Chagas disease; controlled study; disease transmission; ecophysiology; egg; embryo; environmental temperature; female; fertility; food intake; gender; insect bite; insect development; insect vector; male; nonhuman; population growth; Rhodnius prolixus; survival; animal; growth, development and aging; Rhodnius; temperature; tropic climate; Animals; Female; Fertility; Male; Rhodnius; Temperature; Tropical Climate
Año:2018
Volumen:74
Página de inicio:92
Página de fin:99
DOI: http://dx.doi.org/10.1016/j.jtherbio.2018.03.022
Título revista:Journal of Thermal Biology
Título revista abreviado:J. Therm. Biol.
ISSN:03064565
CODEN:JTBID
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03064565_v74_n_p92_Rolandi

Referencias:

  • Asin, S., Catalá, S.S., Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption (1995) J. Parasitol., 81, pp. 1-7
  • Beaman, J.E., White, C.R., Seebacher, F., Evolution of plasticity: mechanistic link between development and reversible acclimation (2016) Trends Ecol. Evol., 31, pp. 237-249
  • Boher, F., Trefault, N., Estay, S.A., Bozinovic, F., Ectotherms in variable thermal landscapes: a physiological evaluation of the invasive potential of fruit flies species (2016) Front. Physiol., 7, pp. 1-6
  • Bozinovic, F., Bastías, D.A., Boher, F., Clavijo-Baquet, S., Estay, S.A., Angilletta, M.J., The mean and variance of environmental temperature interact to determine physiological tolerance and fitness (2012) Physiol. Biochem. Zool., 84, pp. 543-552
  • Bozinovic, F., Calosi, P., Spicer, J.I., Physiological correlates of geographic range in Animals (2011) Annu. Rev. Ecol. Evol. Syst., 42, pp. 155-179
  • Bozinovic, F., Catalan, T.P., Estay, S.A., Sabat, P., Acclimation to daily thermal variability drives the metabolic performance curve (2013) Evol. Ecol. Res., 15, pp. 579-587
  • Bozinovic, F., Sabat, P., Rezende, E.L., Canals, M., Temperature variability and thermal performance in ectotherms: acclimation, behaviour, and experimental considerations (2016) Evol. Ecol. Res., 17, pp. 111-124
  • Buxton, P.A., The biology of a blood-sucking bug, Rhodnius prolixus (1930) Trans. R. Entomol. Soc. Lond., 78, pp. 227-256
  • Carrington, L.B., Armijos, M.V., Lambrechts, L., Scott, T.W., Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti (2013) PLoS Negl. Trop. Dis., p. 7
  • Chiang, R.G., Chiang, J.A., Fecundity of the blood-feeding insect Rhodnius prolixus increases in successive periods of egg production (1995) Experientia, 51, pp. 289-292
  • Clark, M.S., Worland, M.R., How insects survive the cold: molecular mechanisms—a review (2008) J. Comp. Physiol. B, 178, pp. 917-933
  • Clavijo-Baquet, S., Boher, F., Ziegler, L., Martel, S.I., Estay, S.A., Bozinovic, F., Differential responses to thermal variation between fitness metrics (2014) Sci. Rep., 4, p. 5349
  • Colinet, H., Sinclair, B.J., Vernon, P., Renault, D., Insects in fluctuating thermal environments (2014) Annu. Rev. Entomol., pp. 1-18
  • Damborsky, M.P., Bar, M.E., Gorla, D.E., Life cycle and reproductive patterns of Triatoma rubrovaria (Blanchard, 1843) (Hemiptera: reduviidae) under constant and fluctuating conditions of temperature and humidity (2005) Rev. Soc. Bras. Med. Trop., 38, pp. 433-437
  • Davey, K.G., The interaction of feeding and mating in the hormonal control of egg production in Rhodnius prolixus (2007) J. Insect Physiol., 53, pp. 208-215
  • Davey, K.G., Copulation and egg production in Rhodnius prolixus: the role of the spermathecae (1965) J. Exp. Biol., 42, pp. 373-378
  • Davey, K.G., Some consequences of copulation in Rhodnius prolixus (1967) J. Insect Physiol., 13, pp. 1629-1636
  • Davey, K.G., Kuster, J., The source of an antigonadotropin in the female of Rhodnius prolixus Stål (1981) Can. J. Zool., pp. 4-7
  • de la Vega, G.J., Medone, P., Ceccarelli, S., Rabinovich, J.E., Schilman, P.E., Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors (2015) Ecography (Cop.), 38, pp. 1-10
  • de la Vega, G.J., Schilman, P.E., Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America (2018) Med. Vet. Entomol., 32, pp. 1-13
  • de O Rodrigues, J., Lorenzo, M.G., Martins-Filho, O.A., Elliot, S.L., Guarneri, A.A., Temperature and parasite life-history are important modulators of the outcome of Trypanosoma rangeli–Rhodnius prolixus interactions (2016) Parasitology, 143, pp. 1459-1468
  • Elliot, S.L., Rodrigues, J., de, O., Lorenzo, M.G., Martins-Filho, O.A., Guarneri, A.A., Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner (2015) PLoS Negl. Trop. Dis., 9, pp. 1-13
  • Estay, S.A., Lima, M., Bozinovic, F., The role of temperature variability on insect performance and population dynamics in a warming world (2014) Oikos, 123, pp. 131-140
  • Feliciangeli, M.D., Rabinovich, J.E., Fernandez, E., Resistencia al ayuno en Triatominos (Hemiptera, Reduviidae) venezolanos. I. Rhodnius prolixus Stal (1980) Rev. Inst. Med. Trop. Sao Paulo, 22, pp. 53-61
  • Folguera, G., Bastías, D.A., Caers, J., Rojas, J.M., Piulachs, M.-D., Bellés, X., Bozinovic, F., An experimental test of the role of environmental temperature variability on ectotherm molecular, physiological and life-history traits: implications for global warming (2011) Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 159, pp. 242-246
  • Foray, V., Desouhant, E., Voituron, Y., Larvor, V., Renault, D., Colinet, H., Gibert, P., Does cold tolerance plasticity correlate with the thermal environment and metabolic profiles of a parasitoid wasp? (2013) Comp. Biochem. Physiol. - A Mol. Integr. Physiol., 164, pp. 77-83
  • Friend, W.G., Choy, C.T.H., Cartwright, E., The Effect of nutrient intake on the development and the egg production of Rhodnius prolixus Stahl (Hemiptera: Reduviidae) (1965) Can. J. Zool., 43, pp. 891-904
  • Gaston, K.J., Blackburn, T.M., Pattern and process in macroecology (2000), Blackwell Publishing; Giojalas, L.C., Catalá, S.S., Changes in male Triatoma infestans reproductive efficiency caused by a suboptimal temperature (1993) J. Insect Physiol., 39, pp. 297-302
  • Guarneri, A.A., Lazzari, C.R., Xavier, A.A.P., Diotaiuti, L., Lorenzo, M.G., The effect of temperature on the behaviour and development of Triatoma brasiliensis (2003) Physiol. Entomol., 28, pp. 185-191
  • Heger, T.J., Guerin, P.M., Eugster, W., Microclimatic factors influencing refugium suitability for Rhodnius prolixus (2006) Physiol. Entomol., 31, pp. 248-256
  • Hölldobler, B., Wilson, E., The ants (1990), Harvard University Press Cambridge, Massachusetts; Huey, R.B., Kingsolver, J.G., Evolution of thermal sensitivity of ectotherm performance (1989) Trends Ecol. Evol., 4, pp. 131-135
  • Kelty, J.D., Lee, R.E., Jr, Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles (2001) J. Exp. Biol., 204, pp. 1659-1666
  • King, A.M., MacRae, T.H., Insect heat shock proteins during stress and diapause (2015) Annu. Rev. Entomol., 60, pp. 59-75
  • Kingsolver, J.G., Higgins, J.K., Augustine, K.E., Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects (2015) J. Exp. Biol., 218, pp. 2218-2225
  • Kjaersgaard, A., Pertoldi, C., Loeschcke, V., Blanckenhorn, W.U., The effect of fluctuating temperatures during development on fitness-related traits of Scatophaga stercoraria (Diptera: Scathophagidae) (2013) Environ. Entomol., 42, pp. 1069-1078
  • Kovats, R.S., Campbell-Lendrum, D.H., McMichel, A.J., Woodward, A., Cox, J.S.H., Early effects of climate change: do they include changes in vector-borne disease? (2001) Philos. Trans. R. Soc. B Biol. Sci., 356, pp. 1057-1068
  • Lambrechts, L., Paaijmans, K.P., Fansiri, T., Carrington, L.B., Kramer, L.D., Thomas, M.B., Scott, T.W., Impact of daily temperature fl uctuations on dengue virus transmission by Aedes aegypti (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 1-6
  • Lazzari, C.R., Temperature preference in Triatoma infestans (Hemiptera: Reduviidae) (1991) Bull. Entomol. Res., 81, pp. 273-276
  • Lehane, M.J., McEwen, P.K., Whitaker, C.J., Schofield, C.J., The role of temperature and nutritional-status in flight initiation By Triatoma infestans (1992) Acta Trop., 52, pp. 27-38
  • Luz, C., Fargues, J., Grunewald, J., Development of Rhodnius prolixus (Hemiptera: Reduviidae) under constant and cyclic conditions of temperature and humidity (1999) Mem. Inst. Oswaldo Cruz, 94, pp. 403-409
  • Luz, C., Fargues, J., Grunewald, J., The effect of fluctuating temperature and humidity on the longevity of starved Rhodnius prolixus (Hem., Triatominae) (1998) J. Appl. Entomol., 122, pp. 219-222
  • Lyons, C.L., Coetzee, M., Chown, S.L., Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus (2013) Parasit. Vectors, p. 6
  • Martin, T.L., Huey, R.B., Why “suboptimal” is optimal: Jensen's inequality and ectotherm thermal preferences (2008) Am. Nat., 171, pp. E102-E118
  • Minoli, S.A., Lazzari, C.R., Chronobiological basis of thermopreference in the haematophagous bug Triatoma infestans (2003) J. Insect Physiol., 49, pp. 927-932
  • Paaijmans, K.P., Blanford, S., Bell, A.S., Blanford, J.I., Read, A.F., Thomas, M.B., Influence of climate on malaria transmission depends on daily temperature variation (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 15135-15139
  • Parton, W.J., Logan, J.A., A model for diurnal variation in soil and air temperature (1981) Agric. Meteorol., 23, pp. 205-216
  • Pigliucci, M., Phenotypic plasticity: beyond nature and nurture (2001), The Johns Hopkins University Press; Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, {R Core Team}, nlme: Linear and Nonlinear Mixed Effects Models; Pires, H.H.R., Lazzari, C.R., Schilman, P.E., Diotaiuti, L., Dynamics of thermopreference in the Chagas disease vector Panstrongylus megistus (Hemiptera: Reduviidae) (2002), 39, pp. 716-719; Prange, H.D., Evaporative cooling in insects (1996) J. Insect Physiol., 42, pp. 493-499
  • (2017), R Core Team. R: A language and environment for statistical computing; Raffel, T.R., Romansic, J.M., Halstead, N.T., McMahon, T.A., Venesky, M.D., Rohr, J.R., Disease and thermal acclimation in a more variable and unpredictable climate (2012) Nat. Clim. Chang., 3, pp. 146-151
  • Ragland, G.J., Kingsolver, J.G., The effect of fluctuating temperatures on ectotherm life-history traits: Comparisons among geographic populations of Wyeomyia smithii (2008) Evol. Ecol. Res., 10, pp. 29-44
  • Rolandi, C., Efectos fisiológicos de cambios en la temperatura ambiental sobre la vinchuca Rhodnius prolixus y sus posibles consecuencias a nivel poblacional (2016), Univesidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales; Rolandi, C., Iglesias, M.S., Schilman, P.E., Metabolism and water loss rate of the haematophagous insect Rhodnius prolixus: effect of starvation and temperature (2014) J. Exp. Biol., 217, pp. 4414-4422
  • Rolandi, C., Schilman, P.E., Aggregated oviposition in Rhodnius prolixus, sensory cues and physiological consequences (2017) J. Insect Physiol., 98, pp. 74-82
  • Rolandi, C., Schilman, P.E., Linking global warming, metabolic rate of hematophagous vectors, and the transmission of infectious diseases (2012) Front. Physiol., 3, pp. 1-3
  • Ruel, J.J., Ayres, M.P., Jensen's inequality predicts effects of environmental variation (1999) Trends Ecol. Evol., 14, pp. 361-366
  • Saenz, R.A., Medone, P., di Clemente, N., Tongen, A., Rabinovich, J., Critical threshold meal size and molt initiation in Rhodnius prolixus (2017) Physiol. Entomol.
  • Schilman, P.E., Metabolism and gas exchange patterns in Rhodnius prolixus (2017) J. Insect Physiol., 97, pp. 38-44
  • Schilman, P.E., Lazzari, C.R., Temperature preference in Rhodnius prolixus, effects and possible consequences (2004) Acta Trop., 90, pp. 115-122
  • Schilman, P.E., Nuñez, J.A., Lazzari, C.R., Attributes of oviposition substrates affect fecundity in Rhodnius prolixus (1996) J. Insect Physiol., 42, pp. 837-841
  • Schofield, C.J., Triatominae (Biología y Control) (1994), Eurocommunica Publications Sussex; Terblanche, J.S., Chown, S.L., The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae) (2006) J. Exp. Biol., 209, pp. 1064-1073
  • Terblanche, J.S., Clusella-Trullas, S., Deere, J.A., Van Vuuren, B.J., Chown, S.L., Directional evolution of the slope of the metabolic rate-temperature relationship is correlated with climate (2009) Physiol. Biochem. Zool., 82, pp. 495-503
  • Terblanche, J.S., Nyamukondiwa, C., Kleynhans, E., Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata) (2010) Entomol. Exp. Appl., 137, pp. 304-315
  • Therneau, T.M., (2015), A Package for Survival Analysis in S; Wigglesworth, V.B., (1972) The Principles of Insect Physiology, , 7th ed. Chapman & Hall London
  • Williams, C.M., Marshall, K.E., MacMillan, H.A., Dzurisin, J.D.K., Hellmann, J.J., Sinclair, B.J., Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly (2012) PLoS One, 7, p. e34470
  • Worner, S.P., Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect (1992) Environ. Entomol., 21, pp. 689-699

Citas:

---------- APA ----------
Rolandi, C. & Schilman, P.E. (2018) . The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus. Journal of Thermal Biology, 74, 92-99.
http://dx.doi.org/10.1016/j.jtherbio.2018.03.022
---------- CHICAGO ----------
Rolandi, C., Schilman, P.E. "The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus" . Journal of Thermal Biology 74 (2018) : 92-99.
http://dx.doi.org/10.1016/j.jtherbio.2018.03.022
---------- MLA ----------
Rolandi, C., Schilman, P.E. "The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus" . Journal of Thermal Biology, vol. 74, 2018, pp. 92-99.
http://dx.doi.org/10.1016/j.jtherbio.2018.03.022
---------- VANCOUVER ----------
Rolandi, C., Schilman, P.E. The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus. J. Therm. Biol. 2018;74:92-99.
http://dx.doi.org/10.1016/j.jtherbio.2018.03.022