Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In bilateral organisms, fluctuating asymmetry (FA) was often used as an index of developmental instability but FA was not always found to be higher in stressful environments. An intercontinental set of recombinant inbred lines (RIL) was used to search for genetic variation in fluctuating asymmetry (FA) of both wing length (WL) and wing width (WW) in Drosophila melanogaster when reared at both benign (25 °C) and stressful (30 °C) temperatures. FA levels did not differ between benign and stressful temperatures. At benign temperature, no QTL was significant for FA. However, at stressful temperature, composite interval mapping revealed some QTL for FA in both WL and WW. QTL-based scans under stressful thermal environments may be an informative approach for either FA or developmental instability analyses, even when FA levels are similar between stressful and benign environments. © 2011 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Is the number of possible QTL for asymmetry phenotypes dependent on thermal stress?
Autor:Gómez, F.H.; Norry, F.M.
Filiación:Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
Palabras clave:Developmental instability; Temperature-specific QTL; Thermal stress; Wing asymmetry; heat shock protein 90; somatomedin receptor; article; chromosome 2; chromosome 3; controlled study; Drosophila melanogaster; epigenetics; female; gene mapping; genetic variability; genomic instability; genotype; haplotype; heat stress; hormone synthesis; male; nonhuman; phenotype; quantitative trait locus; temperature stress; X chromosome; Drosophila melanogaster
Año:2012
Volumen:37
Número:1
Página de inicio:1
Página de fin:5
DOI: http://dx.doi.org/10.1016/j.jtherbio.2011.10.001
Título revista:Journal of Thermal Biology
Título revista abreviado:J. Therm. Biol.
ISSN:03064565
CODEN:JTBID
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03064565_v37_n1_p1_Gomez

Referencias:

  • Andalo, C., Bazin, A., Shykoff, J.A., Is there a genetic basis for fluctuating asymmetry and does it predict fitness in the plant Lotus corniculatus grown in different environmental conditions? (2000) Int. J. Plant Sci, 161, pp. 213-220
  • Baden, H.P., Kollias, N., Anderson, R.R., Hopkins, T., Raftery, L., Drosophila melanogaster larvae detect low doses of UVC radiation as manifested by a writhing response (1996) Arch. Insect Biochem. Physiol., 32, pp. 187-196
  • Breuker, C.J., Brakefield, P.M., Heat shock in the developmentally sensitive period of butterfly eyespots fails to increase fluctuating asymmetry (2003) Evol. Dev., 5, pp. 231-239
  • Burgio, G., Baylac, M., Heyer, E., Montagutelli, X., Genetic analysis of skull shape variation and morphological integration in the mouse using interspecific recombinant congenic strains between C57BL/6 and mice of the mus spretus species (2009) Evolution, 63, pp. 2668-2686
  • Carbone, M.A., Jordan, K.W., Lyman, R.F., Harbison, S.T., Leips, J., Morgan, T.J., DeLuca, M., Mackay, T.F.C., Phenotypic variation and natural selection at catsup, a pleiotropic quantitative trait gene in Drosophila (2006) Curr. Biol., 16, pp. 912-919
  • Coffman, C.J., Wayne, M.L., Nuzhdin, S.V., Higgins, L.A., McIntyre, L.M., Identification of co-regulated transcripts affecting male body size in Drosophila (2005) Genome Biol., 6, pp. R53
  • Defays, R., Gómez, F.H., Sambucetti, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster (2011) Exp. Gerontol., 46, pp. 819-826
  • De Jong, G., Bochdanovits, Z., Latitudinal clines in Drosophila melanogaster: body size, allozyme frequencies, and the insulin signalling pathway (2003) J. Genet., 82, pp. 207-223
  • Dongen, S.V., Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future (2006) J. Evol. Biol, 19, pp. 1727-1743
  • Dupuis, J., Siegmund, D., Statistical methods for mapping quantitative trait loci from a dense set of markers (1999) Genetics, 151, pp. 373-386
  • Emlen, D.J., Allen, C.E., Genotype to phenotype: physiological control of trait size and scaling in insects (2003) Integr. Comp. Biol., 43, pp. 617-634
  • (2003), 31, pp. 172-175. , http://flybase.org, FlyBase Consortium: The FlyBase database of the Drosophila genome projects and community literature Nucleic Acids Res; Fuller, R.C., Houle, D., Detecting genetic variation in developmental instability by artificial selection on fluctuating asymmetry (2002) J. Evol. Biol, 15, pp. 954-960
  • Gomez, F.H., Defays, R., Sambucetii, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Quantitative trait locus for starvation resistance in an intercontinental set of mapping populations of Drosophila melanogaster (2009) Fly, 3, pp. 246-252
  • Leamy, L.J., Klingenberg, C.P., The genetics and evolution of fluctuating asymmetry (2005) Annu. Rev. Ecol. Evol. Syst., 36, pp. 1-21
  • Leamy, L.J., Routman, E.J., Cheverud, J.M., A search for quantitative trait loci affecting asymmetry of mandibular characters in mice (1997) Evolution, 51, pp. 957-969
  • Loeschcke, V., Kristensen, T.N., Norry, F.M., Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster (2011) J. Insect Physiol., 57, pp. 1227-1231
  • Mackay, T.F.C., Stone, E.A., Aryoles, J.F., The genetics of quantitative traits: challenges and prospects (2009) Nat. Rev. Genet., 10, pp. 565-577
  • Markow, T.A., Ricker, J.P., Male size, developmental stability, and mating success in natural populations of three Drosophila species (1991) Heredity, 69, pp. 122-127
  • McKechnie, S.W., Halford, M.M., McColl, G., Hoffmann, A.A., (1998), 95, pp. 2423-2428. , Both allelic variation and expression of nuclear and cytoplasmic transcripts of Hsr-omega are closely associated with thermal phenotype in Drosophila. Proc. Natl. Acad. Sci; Morimoto, R.I., Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators (1998) Genes Dev., 12, pp. 3788-3796
  • Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Mol. Ecol., 13, pp. 3585-3594
  • Norry, F.M., Larsen, P.F., Liu, Y., Loeschcke, V., Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster (2009) J. Insect Physiol., 55, pp. 1050-1057
  • Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C., Loeschcke, V., QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2008) Mol. Ecol, 17, pp. 4570-4581
  • Palmer, A.R., Fluctuating asymmetry analyses: a primer (1994) Developmental Instability: Its Origins and Evolutionary Implications, pp. 355-363. , Kluwer, Dordrecht, T.A. Markow (Ed.)
  • Palmer, A.R., Strobeck, C., Fluctuating asymmetry: measurement, analysis, patterns A (1986) Rev. Ecol. Syst, 17, pp. 391-421
  • Parsons, P.A., Fluctuating asymmetry: an epigenetic measure of stress (1990) Biol. Rev., 65, pp. 131-145
  • Pasyukova, E.G., Vieira, C., Mackay, T.F.C., Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster (2000) Genetics, 156, pp. 1129-1146
  • Queitsch, C., Sangster, T.A., Lindquist, S., Hsp90 as a capacitor of phenotypic variation (2002) Nature, 417, pp. 618-624
  • Rasband, W., (2001), http://www.rsb.info.nih.gov/ij/, ImageJ. A program for image processing and analysis in Java. ; Rutherford, S., Lindquist, S., Hsp90 as a capacitor for morphological evolution (1998) Nature, 396, pp. 336-342
  • Sabban, E.L., Kvetnansky, R., Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events (2001) Trends Neurosci., 24, pp. 91-98
  • Santos, M., Fluctuating asymmetry is nongenetically related to mating success in Drosophila buzzatii (2001) Evolution, 55, pp. 2248-2256
  • Takahashi, K.H., Okada, Y., Teramura, K., Genome-wide deficiency mapping of the regions responsible for temporal canalization of the developmental processes of Drosophila melanogaster (2011) J. Hered., 102, pp. 448-457
  • Takahashi, K.H., Rako, L., Takano-Shimizu, T., Hoffmann, A.A., Lee, S.F., Effects of small Hsp genes on developmental stability and microenvironmental canalization (2010) BMC Evol. Biol., 10, p. 284
  • Trotta, V., Garoia, F., Guerra, D., Pezzoli, M.C., Grifoni, D., Cavicchi, S., Developmental instability of the Drosophila wing as an index of genomic perturbation and altered cell proliferation (2005) Evol. Dev., 7, pp. 234-243
  • Tu, M.-P., Tatar, M., Juvenile diet restriction and the aging and reproduction of adult Drosophila melanogaster (2003) Aging Cell, 2, pp. 327-333
  • Tu, M.-P., Yin, C.-M., Tatar, M., Impaired ovarian ecdysone synthesis of Drosophila melanogaster insulin receptor mutants (2002) Aging Cell, 1, pp. 158-160
  • Van Valen, L., A study of fluctuating asymmetry (1962) Evolution, 16, pp. 125-142
  • Vishalakshi, C., Singh, B.N., Effect of developmental temperature stress on fluctuating asymmetry in certain morphological traits in Drosophila ananassae (2008) J. Therm. Biol., 33, pp. 201-208
  • Waddington, C.H., Canalization of development and the inheritance of acquired characters (1942) Nature, 150, pp. 563-565
  • Wang, S., Basten, C.J., Zeng, Z.-B., (2010) Windows QTL Cartographer 2.5. Department of Statistics
  • Wright, T.R.F., The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster (1987) Adv. Genet., 24, pp. 127-222
  • Yeyati, P.L., Bancewicz, R.M., Maule, J., van Heyningen, V., Hsp90 selectively modulates phenotype in vertebrate development (2007) PLoS Genet., 3, pp. e43
  • Zakharov, V.M., Population phenogenetics: analysis of developmental stability in natural populations (1992) Acta. Zool. Fenn, 191, pp. 7-30

Citas:

---------- APA ----------
Gómez, F.H. & Norry, F.M. (2012) . Is the number of possible QTL for asymmetry phenotypes dependent on thermal stress?. Journal of Thermal Biology, 37(1), 1-5.
http://dx.doi.org/10.1016/j.jtherbio.2011.10.001
---------- CHICAGO ----------
Gómez, F.H., Norry, F.M. "Is the number of possible QTL for asymmetry phenotypes dependent on thermal stress?" . Journal of Thermal Biology 37, no. 1 (2012) : 1-5.
http://dx.doi.org/10.1016/j.jtherbio.2011.10.001
---------- MLA ----------
Gómez, F.H., Norry, F.M. "Is the number of possible QTL for asymmetry phenotypes dependent on thermal stress?" . Journal of Thermal Biology, vol. 37, no. 1, 2012, pp. 1-5.
http://dx.doi.org/10.1016/j.jtherbio.2011.10.001
---------- VANCOUVER ----------
Gómez, F.H., Norry, F.M. Is the number of possible QTL for asymmetry phenotypes dependent on thermal stress?. J. Therm. Biol. 2012;37(1):1-5.
http://dx.doi.org/10.1016/j.jtherbio.2011.10.001