Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Knockdown resistance to high temperature (KRHT) is a genetically variable trait for thermal adaptation in insects. Selection for KRHT may affect a number of fitness components as well as resistance to several forms of environmental stress. To test for heritable (co)-variation in KRHT, we examined direct and correlated responses to bi-directional selection on this trait in Drosophila buzzatii. Replicated lines were artificially selected for decreased and increased KRHT. After 12 generations of artificial selection, lines diverged significantly for high KRHT only. Starvation resistance increased in two lines that strongly responded to selection for high KRHT, and these two lines also showed relatively longer chill-coma recovery time. Developmental time and body size showed no correlated responses to KRHT-selection. These results suggest that KRHT is a heritable trait that can evolve towards increased thermotolerance with no genetic trade-offs associated to starvation resistance, developmental time and body size. © 2010 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Direct and correlated responses to artificial selection for high and low knockdown resistance to high temperature in Drosophila buzzatii
Autor:Sambucetti, P.; Scannapieco, A.C.; Norry, F.M.
Filiación:Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C-1428-EHA) Buenos Aires, Argentina
Palabras clave:Body size; Chill-coma recovery; Developmental time; Heat-stress selection; Starvation resistance; Thermal adaptation; animal experiment; article; artificial selection; body size; chill coma recovery; cold exposure; controlled study; developmental stage; developmental time; Drosophila; drosophila buzzatii; female; genetic trait; heat tolerance; heritability; high temperature; insect development; male; nonhuman; starvation; time; Drosophila buzzatii; Hexapoda
Año:2010
Volumen:35
Número:5
Página de inicio:232
Página de fin:238
DOI: http://dx.doi.org/10.1016/j.jtherbio.2010.05.006
Título revista:Journal of Thermal Biology
Título revista abreviado:J. Therm. Biol.
ISSN:03064565
CODEN:JTBID
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03064565_v35_n5_p232_Sambucetti

Referencias:

  • Anderson, A.R., Collinge, J.E., Hoffmann, A.A., Kellett, M., McKechnie, S.W., Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster (2003) Heredity, 90, pp. 195-201
  • Baldal, A.E., Brakefield, P.M., Zwaan, B.J., Multitrait evolution in lines of Drosophila melanogaster selected for starvation resistance: the role of metabolic rates and implications for the evolution of longevity (2006) Evolution, 60, pp. 1435-1444
  • Bertoli, C.I., Scannapieco, A.C., Sambucetti, P., Norry, F.M., Direct and correlated responses to chill-coma recovery selection in Drosophila buzzatii (2009) Entomologia Experimentalis et Applicata, 134, pp. 154-159
  • Bochdanovits, Z., De Jong, G., Temperature dependence of fitness components in geographical populations of Drosophila melanogaster: changing the association between size and fitness (2003) Biological Journal of the Linnean Society, 80, pp. 717-725
  • Bowler, K., Terblanche, J.S., Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? (2008) Biological Reviews, 83, pp. 339-355
  • Bubli, O.A., Imasheva, A.G., Loeschcke, V., Selection for knockdown resistance to heat in Drosophila melanogaster at high and low larval densities (1998) Evolution, 52, pp. 619-625
  • Bubliy, O.A., Loeschcke, V., Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster (2005) Journal of Evolutionary Biology, 18, pp. 789-803
  • David, J.R., Gilbert, P., Pla, E., Petavy, G., Karan, D., Moreteau, B., Cold stress tolerance in Drosophila-analysis of chill coma recovery in D. melanogaster (1998) Journal of Thermal Biology, 23, pp. 291-299
  • Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C., Martin, P.R., Impacts of climate warming on terrestrial ectotherms across latitude (2008) In: Proceedings of the National Academy of Sciences USA, 105, pp. 6668-6672
  • Dolgin, E.S., Whitlock, M.C., Agrawal, A.F., Male Drosophila melanogaster have higher mating success when adapted to their thermal environment (2006) Journal of Evolutionary Biology, 19, pp. 1894-1900
  • Folk, D.G., Zwollo, P., Rand, D.M., Gilchrist, G.W., Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males (2006) Journal of Experimental Biology, 209, pp. 3964-3973
  • Gibbs, A.G., Laboratory selection for the comparative physiologist (1999) Journal of Experimental Biolology, 202, pp. 2709-2718
  • Gilchrist, G.W., Huey, R.B., The direct response of Drosophila melanogaster to selection on knockdown temperature (1999) Heredity, 83, pp. 15-29
  • Gomez, F.H., Bertoli, C.I., Sambucetti, P., Scannapieco, A.C., Norry, F.M., Heat-induced hormesis in longevity as correlated response to thermal-stress selection in Drosophila buzzatii (2009) Journal of Thermal Biology, 34, pp. 17-22
  • Gomez, F.H., Defays, R., Sambucetii, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Quantitative trait locus for starvation resistance in an intercontinental set of mapping populations of Drosophila melanogaster (2009) Fly, 3, pp. 247-252
  • Harshman, L.G., Hoffmann, A.A., Laboratory selection experiments using Drosophila: what do they really tell us? (2000) Trends in Ecology and Evolution, 15, pp. 32-36
  • Hoffmann, A.A., Anderson, A., Hallas, R., Opposing clines for high and low temperature resistance in Drosophila melanogaster (2002) Ecology Letters, 5, pp. 614-618
  • Hoffmann, A.A., Parsons, P.A., (1991) Evolutionary Genetics and Environmental Stress, , Oxf. Sci. Publ., Oxford
  • Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) Journal of Thermal Biology, 28, pp. 175-216
  • Hoffmann, A.A., Willi, Y., Detecting genetic responses to environmental change (2008) Nature Review Genetics, 9, pp. 421-432
  • Huey, R.B., Crill, W.D., Kingsolver, J.G., Weber, K.E., A method for rapid measurement of heat or cold resistance of small insects (1992) Functional Ecology, 6, pp. 489-494
  • Karan, D., Dahiya, N., Munjal, A.K., Gibert, P., Moreteau, B., Parkash, R., David, J.R., Desiccation and starvation tolerance of adult Drosophila: opposite latitudinal clines in natural populations of three different species (1998) Evolution, 52, pp. 825-831
  • Karl, I., Fischer, K., Altitudinal and environmental variation in lifespan in the Copper butterfly Lycaena tityrus (2009) Functional Ecology, 23, pp. 1132-1138
  • Kristensen, T.N., Loeschcke, V., Hoffmann, A.A., Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes (2007) In: Proceedings of the Royal Society of London, 274, pp. 771-778
  • Kristensen, T.N., Pedersen, K.S., Vermeulen, C.J., Loeschcke, V., Research on inbreeding in the 'omic' Era (2009) Trends in Ecology and Evolution, 25, pp. 44-52
  • Loeschcke, V., Hoffmann, A.A., Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature (2007) The American Naturalist, 169, pp. 175-183
  • MacMillan, H.A., Walsh, J.P., Sinclair, B.J., The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster (2009) Insect Science, 16, pp. 263-276
  • McColl, G., Hoffmann, A.A., McKechnie, S.W., Response to two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster (1996) Genetics, 143, pp. 1615-1627
  • Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242
  • Mori, N., Kimura, M.N., Selection for rapid and slow recovery from chill- and heat-coma in Drosophila melanogaster (2008) Biological Journal of the Linnean Society, 95, pp. 72-80
  • Norry, F.M., Gomez, F.H., Loeschcke, V., Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster (2007) Molecular Ecology, 16, pp. 3274-3284
  • Norry, F.M., Larsen, P., Liu, Y., Loeschcke, V., Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster (2009) Journal of Insect Physiology, 55, pp. 1050-1057
  • Norry, F.M., Loeschcke, V., Longevity and resistance to cold stress in cold-stress selected lines and their controls in Drosophila melanogaster (2002) Journal of Evolutionary Biology, 15, pp. 775-783
  • Norry, F.M., Sambucetti, P., Scannapieco, A.C., Loeschcke, V., Altitudinal patterns for longevity, fecundity and senescence in Drosophila buzzatii (2006) Genetica, 128, pp. 81-93
  • Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V., Quantitative trait loci for heat-hardening acclimation, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2008) Molecular Ecology, 17, pp. 4570-4581
  • Norry, F.M., Vilardi, J.C., Fanara, J.J., Hasson, E., Courtship success and multivariate analysis of sexual selection on morphometric traits in Drosophila buzzatii (Diptera, Drosophilidae) (1995) Journal of Insect Behavior, 8, pp. 219-229
  • Overgaard, J., Sørensen, J.G., Rapid thermal adaptation during field temperature variations in Drosophila melanogaster (2008) Cryobiology, 56, pp. 159-162
  • Partridge, L., Barrie, B., Barton, N.H., Fowler, K., French, V., Rapid laboratory evolution of adult life-history traits in Drosophila melanogaster in response to temperature (1995) Evolution, 49, pp. 538-544
  • Partridge, L., Hoffmann, A., Jones, J.S., Male size and mating success in Drosophila melanogaster and Drosophila pseudoobscura under field conditions (1987) Animal Behaviour, 35, pp. 468-476
  • Reusch, T.B.H., Wood, T.E., Molecular ecology of global change (2007) Molecular Ecology, 16, pp. 3973-3992
  • Robinson, S.J.W., Zwaan, B., Partridge, L., Starvation resistance and adult body composition in a latitudinal cline of Drosophila melanogaster (2000) Evolution, 54, pp. 1819-1824
  • Roper, C., Pignatelly, P., Partridge, L., Evolutionary effects of selection on age at reproduction in larval and adult Drosophila melanogaster (1993) Evolution, 47, pp. 445-455
  • Sambucetti, P., Loeschcke, V., Norry, F.M., Developmental time and size-related traits in Drosophila buzzatii along and altitudinal gradient from Argentina (2006) Hereditas, 143, pp. 77-83
  • Sarup, P., Sørensen, J.G., Dimitrov, K., Barker, J.S.F., Loeschcke, V., Climatic adaptation of Drosophila buzzatii populations in southeast Australia (2006) Heredity, 96, pp. 479-486
  • Scannapieco, A.C., Sambucetti, P., Norry, F.M., Direct and correlated responses to selection for longevity in Drosophila buzzatii (2009) Biological Journal of the Linnean Society, 97, pp. 738-748
  • Schmidt, P.S., Matzkin, L., Ippolito, M., Eanes, W.F., Geographic variation in diapause incidence, life-history traits, and climatic adaptation in Drosophila melanogaster (2005) Evolution, 59, pp. 1721-1732
  • SgrÒ, C.M., Partridge, L., Evolutionary responses of life history of wild-caught Drosophila melanogaster to two standard methods of laboratory culture (2000) The American Naturalist, 156, pp. 341-353
  • Sisodia, S., Singh, B.N., Influence of developmental temperature on cold shock and chill coma recovery in Drosophila ananassae: acclimation and latitudinal variations among Indian populations (2010) Journal of Thermal Biology, 35, pp. 117-124
  • Sokal, R.R., Rohlf, F.J., (1981), Biometry, second ed. W.H. Freeman, San Francisco, CA; Sørensen, J.G., Norry, F.M., Scannapieco, A.C., Loeschcke, V., Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World (2005) Journal of Evolutionary Biology, 18, pp. 829-837
  • Steigenga, M.J., Fischer, K., Fitness consequences of variation in developmental temperature in a butterfly (2009) Journal of Thermal Biology, 34, pp. 244-249
  • (1999) STATISTICA for Windows (Computer Program Manual), , StatSoft Inc., Tulsa, StatSoft
  • Williams, S.E., Shoo, L.P., Isaac, J.L., Hoffmann, A.A., Langham, G., Towards an integrated framework for assessing the vulnerability of species to climate change (2008) Plos Biology, 6, pp. 2621-2626

Citas:

---------- APA ----------
Sambucetti, P., Scannapieco, A.C. & Norry, F.M. (2010) . Direct and correlated responses to artificial selection for high and low knockdown resistance to high temperature in Drosophila buzzatii. Journal of Thermal Biology, 35(5), 232-238.
http://dx.doi.org/10.1016/j.jtherbio.2010.05.006
---------- CHICAGO ----------
Sambucetti, P., Scannapieco, A.C., Norry, F.M. "Direct and correlated responses to artificial selection for high and low knockdown resistance to high temperature in Drosophila buzzatii" . Journal of Thermal Biology 35, no. 5 (2010) : 232-238.
http://dx.doi.org/10.1016/j.jtherbio.2010.05.006
---------- MLA ----------
Sambucetti, P., Scannapieco, A.C., Norry, F.M. "Direct and correlated responses to artificial selection for high and low knockdown resistance to high temperature in Drosophila buzzatii" . Journal of Thermal Biology, vol. 35, no. 5, 2010, pp. 232-238.
http://dx.doi.org/10.1016/j.jtherbio.2010.05.006
---------- VANCOUVER ----------
Sambucetti, P., Scannapieco, A.C., Norry, F.M. Direct and correlated responses to artificial selection for high and low knockdown resistance to high temperature in Drosophila buzzatii. J. Therm. Biol. 2010;35(5):232-238.
http://dx.doi.org/10.1016/j.jtherbio.2010.05.006