Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Abstract We carried out magnetic analyses on a sequence of Cretaceous alkaline-transitional subaerial basalts of Córdoba Province, Argentina, which have high-Ti magnetite as the main opaque phase. Three different groups are identified based on the degree of high-temperature oxidation during the lava extrusion, combined with superimposed maghemitization and hematization. In the first group, titanomagnetites are optically homogeneous or exhibit coarse intergrowths with ilmenite. The magnetic susceptibility and its variation with temperature and magnetic field point to Ti-poorer compositions than those indicated by electron microprobe, which is interpreted as due to low-temperature oxidation with subsolvus microexsolution. The second group of basalts suffered moderate high-temperature oxidation, with crowded exsolved ilmenite laths within a Ti-poor magnetitess host, followed by maghemitization and hematite replacement. The third group shows a strongly advanced degree of low-temperature alteration, with the virtual disappearance of magnetite. Based on magnetic properties and field tests applied to the magnetic remanence, we interpret that maghemitization and hematization must have been responsible for the acquisition of a stable magnetic remanence, in the presence of hydrothermal fluids coeval with volcanism. The most advanced degree of alteration, typical of highly porous amygdaloidal lava flows and volcanic breccias, occurred later, probably due to weathering. © 2015 The Geological Society of London.

Registro:

Documento: Artículo
Título:Oxidation processes and their effects on the magnetic remanence of Early Cretaceous subaerial basalts from Sierra Chica de Córdoba, Argentina
Autor:Geuna, S.E.; Lagorio, S.L.; Vizán, H.
Filiación:IGEBA (CONICET-UBA), Departamento de Cs. Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, Buenos Aires, C428EHA, Argentina
IGRM, Servicio Geológico Minero Argentino, Colectora Av. Gral. Paz 5445, edificio 5, Villa Martelli, Buenos Aires, Argentina
Palabras clave:basalt; breccia; Cretaceous; lava flow; magnetic field; magnetic property; magnetic susceptibility; oxidation; remanent magnetization; titanomagnetite; Argentina; Cordoba [Argentina]; Sierra Chica de Cordoba
Año:2015
Volumen:396
Página de inicio:239
Página de fin:263
DOI: http://dx.doi.org/10.1144/SP396.13
Título revista:Geological Society Special Publication
Título revista abreviado:Geol. Soc. Spec. Publ.
ISSN:03058719
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03058719_v396_n_p239_Geuna

Referencias:

  • Ade-Hall, J.M., Wilson, R.L., Smith, P.J., The petrology, Curie points and natural magnetizations of basic lavas (1965) Geophysical Journal of the Royal Astronomical Society, 9, pp. 323-335. , http://dx.doi.org/10.1111/j.1365-246X.1965.tb03890.x
  • Ade-Hall, J.M., Palmer, H.C., Hubbard, T.P., The magnetic and opaque petrological response of basalts to regional hydrothermal alteration (1971) Geophysical Journal of the Royal Astronomical Society, 24, pp. 137-174. , http://dx.doi.org/10.1111/j.1365-246X.1971.tb02171.x
  • Alt, J.C., Frey, M., Robinson, D., Very low-grade hydrothermal metamorphism of basic igneous rocks (1998) Low-Grade Metamorphism, pp. 169-226. , http://dx.doi.org/10.1002/9781444313345.ch6, Oxford, Blackwell Science
  • Bellieni, G., Comin-Chiaramonti, P., Marques, L.S., Melfi, A.J., Piccirillo, E.M., Nardy, A.J., Roisemberg, A., High- and low-TiO2 flood basalts from the Paraná plateau (Brazil): petrology and geochemical aspects bearing on their mantle origin (1984) Neues Jahrbuch für Mineralogie Abhandlungen, 150, pp. 273-306
  • Beske-Diehl, S., Li, H., Magnetic properties of hematite in lava flows from Iceland: response to hydrothermal alteration (1993) Journal of Geophysical Research, 98, pp. 403-417. , http://dx.doi.org/10.1029/92JB01253
  • Bloemendal, J., King, J.W., Hall, F.R., Doh, S.J., Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes and sediment lithology (1992) Journal of Geophysical Research, 97, pp. 4361-4375. , http://dx.doi.org/10.1029/91JB03068
  • Böhnel, H., McIntosh, G., Sherwood, G., A parameter characterising the irreversibility of thermomagnetic curves (2002) Physics and Chemistry of the Earth, 27, pp. 1305-1309. , http://dx.doi.org/10.1016/S1474-7065(02)00124-9
  • Buddington, A.F., Lindsley, D.H., Iron-titanium oxide minerals and synthetic equivalents (1964) Journal of Petrology, 5, pp. 319-357. , http://dx.doi.org/10.1093/petrology/5.2.310
  • Carmichael, I.S.E., The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates (1967) Contributions to Mineralogy and Petrology, 14, pp. 36-63. , http://dx.doi.org/10.1007/BF00370985
  • Cejudo-Ruiz, R., Goguitchaichvili, A., Geuna, S.E., Alva-Valdivia, L., Solé, J., Morales, J., Early Cretaceous absolute geomagnetic paleointensities from Córdoba province (Argentina) (2006) Earth, Planets and Space, 58, pp. 1333-1339
  • Clark, D.A., Magnetic petrology of igneous intrusions: implications for exploration and magnetic interpretation (1999) Exploration Geophysics, 30, p. 526. , http://dx.doi.org/10.1071/EG999005
  • Cui, Y., Verosub, K.L., Roberts, A.P., The effect of low-temperature oxidation on large multi-domain magnetite (1994) Geophysical Research Letters, 21, pp. 757-760. , http://dx.doi.org/10.1029/94GL00639
  • Day, R., Fuller, M.D., Schmidt, V.A., Hysteresis properties of titanomagnetites: Grain size and composition dependence (1977) Physics of the Earth and Planetary Interiors, 13, pp. 260-267. , http://dx.doi.org/10.1016/0031-9201(77)90108-X
  • Deer, W.A., Howie, R.A., Zussman, J., (1982) Rock-Forming Minerals. Volume 1A, Orthosilicates, , London, Longman
  • de Wall, H., The field-dependence of AC susceptibility in titanomagnetites: implications for the anisotropy of magnetic susceptibility (2000) Geophysical Research Letters, 27, pp. 2409-2411. , http://dx.doi.org/10.1029/2000GL008515
  • Doubrovine, P.V., Tarduno, J.A., On the compositional field of self-reversing titanomaghemite: constraints from Deep Sea Drilling Project Site 307 (2005) Journal of Geophysical Research, 110, p. B11104. , http://dx.doi.org/10.1029/2005JB003865
  • Dunlop, D.J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data (2002) Journal of Geophysical Research, 107, p. B3. , http://dx.doi.org/10.1029/2001JB000486
  • Dunlop, D.J., Özdemir, Ö., (1997) Rock Magnetism. Fundamentals and Frontiers, , http://dx.doi.org/10.1017/CBO9780511612794, Cambridge, Cambridge University Press
  • Frost, B.R., Lindsley, D.H., Lindsley, D.H., Occurrence of iron-titanium oxides in igneous rocks (1991) Oxide Minerals: Petrologic and Magnetic Significance, 25, pp. 433-468. , Chantilly, VA, Mineralogical Society of America, Reviews in Mineralogy
  • Galindo, C., Pankhurst, R.J., Casquet, C., Coniglio, J., Baldo, E., Rapela, C.W., Saavedra, J., Age, Sr- and Nd-isotope systematics, and origin of two fluorite lodes, Sierras Pampeanas, Argentina (1997) International Geology Review, 39, pp. 948-954. , http://dx.doi.org/10.1080/00206819709465312
  • Geuna, S.E., Vizán, H., New Early Cretaceous palaeomagnetic pole from Córdoba Province (Argentina): revision of previous studies and implications for the South American database (1998) Geophysical Journal International, 135, pp. 1085-1100. , http://dx.doi.org/10.1046/j.1365-246X.1998.00688.x
  • Gordillo, C.E., Lencinas, A., Geología y petrología del extremo norte de la Sierra de Los Cóndores, Córdoba (1967) Boletín Academia Nacional de Ciencias, 46, p. 73108
  • Gordillo, C.E., Lencinas, A., El basalto nefelínico de El Pungo, Córdoba (1967) Boletín Academia Nacional de Ciencias, 46, pp. 109-115
  • Gordillo, C.E., Lencinas, A., Perfil geológico de la sierra Chica de Córdoba en la zona del río Los Molinos, con especial referencia a los diques traquibasálticos que la atraviesan (1969) Boletín Academia Nacional de Ciencias, 47, pp. 27-50
  • Gordillo, C.E., Lencinas, A., Turner, J.C.M., Sierras Pampeanas de Córdoba y San Luis (1980) Segundo Simposio de Geología Regional Argentina, 1, pp. 577-650. , Córdoba, Academia Nacional de Ciencias
  • Haggerty, S.E., Rumble, D., Opaque mineral oxides in terrestrial igneous rocks (1976) Oxide Minerals, 3, pp. 101-300. , Chantilly, VA, Mineralogical Society of America, Reviews in Mineralogy
  • Haggerty, S.E., Lindsley, D.H., Oxide textures - a mini-atlas (1991) Oxide Minerals: their Petrologic and Magnetic Significance, 25, p. 29220. , Chantilly, VA, Mineralogical Society of America, Reviews in Mineralogy
  • Hall, J.M., The Iceland Research Drilling Project crustal section: variation of magnetic properties with depth in Icelandic-type oceanic crust (1985) Canadian Journal of Earth Sciences, 22, p. 85101. , http://dx.doi.org/10.1139/e85-007
  • Hargraves, R.B., Young, W.M., Source of stable remanent magnetism in Lambertville diabase (1969) American Journal of Science, 267, pp. 1161-1167. , http://dx.doi.org/10.2475/ajs.267.10.1161
  • Hrouda, F., Low-field variation of magnetic susceptibility and its effect on the anisotropy of magnetic susceptibility of rocks (2002) Geophysical Journal International, 150, pp. 715-723. , http://dx.doi.org/10.1046/j.1365-246X.2002.01731.x
  • Hrouda, F., Pokorný, J., Ježek, J., Chadima, M., Out-of-phase magnetic susceptibility of rocks and soils: a rapid tool for magnetic granulometry (2013) Geophysical Journal International, 194, pp. 170-181. , http://dx.doi.org/10.1093/gji/ggt097
  • Ixer, R.A., Duller, P.R., (1998) Virtual Atlas of Opaque and Ore Minerals and their Associations, , http://www.smenet.org/opaque-ore/, Version 1.1b
  • Johnson, H.P., Hall, J.M., A detailed rock magnetic and opaque mineralogy study of the basalts from the Nazca plate (1978) Geophysical Journal of the Royal Astronomical Society, 52, pp. 45-64. , http://dx.doi.org/10.1111/j.1365-246X.1978.tb04221.x
  • Kay, S.M., Ramos, V.A., El magmatismo cretácico de las sierras de Córdoba y sus implicancias tectónicas (1996) Actas 13° Congreso Geológico Argentino y 3 Congreso de Exploración de Hidrocarburos, Buenos Aires, 3, pp. 453-464
  • Kontny, A., Vahle, C., de Wall, H., Characteristic magnetic behavior of subaerial and submarine lava units from the Hawaiian Scientific Drilling Project (HSDP-2) (2003) Geochemistry, Geophysics, Geosystems, 4, p. 8703. , http://dx.doi.org/10.1029/2002GC000304
  • Kraemer, P.E., Escayola, M.P., Martino, R.D., Hipótesis sobre la evolución tectónica neoproterozoica de las Sierras Pampeanas de Córdoba (30o40′-32o40′), Argentina (1995) Revista de la Asociación Geológica Argentina, 50, pp. 47-59
  • Kruiver, P.P., Dekkers, M.J., Heslop, D., Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation (2001) Earth and Planetary Science Letters, 189, pp. 269-276. , http://dx.doi.org/10.1016/S0012-821X(01)00367-3
  • Lagorio, S.L., Early Cretaceous alkaline volcanism of the Sierra Chica de Córdoba (Argentina): mineralogy, geochemistry and petrogenesis (2008) Journal of South American Earth Sciences, 26, pp. 152-171. , http://dx.doi.org/10.1016/j.jsames.2008.05.003
  • Lagorio, S.L., Montenegro, T.F., Brodtkorb, M., Schalamuk, I., Ceolita de la serie analcima-wairakita en el cerro Libertad, Sierra de los Cóndores, Córdoba (1996) 3° Reunión de Mineralogía y Metalogenia, 5, pp. 139-146. , Instituto de Recursos Minerales, Universidad Nacional de La Plata, Publicación
  • Lanza, R., Zanella, E., Palaeomagnetism of the Ferrar dolerite in the northern Prince Albert Mountains (Victoria Land, Antarctica) (1993) Geophysical Journal International, 114, pp. 501-511. , http://dx.doi.org/10.1111/j.1365-246X.1993.tb06983.x
  • Lattard, D., Engelmann, R., Kontny, A., Sauerzapf, U., Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: effects of composition, crystal chemistry, and thermomagnetic methods (2006) Journal of Geophysical Research, 111, p. B12S28. , http://dx.doi.org/10.129/2006JB004591
  • Lepp, H., Stages in the oxidation of magnetite (1957) American Mineralogist, 42, pp. 679-681
  • Linares, E., González, R., (1990) Catálogo de edades radimétricas de la República Argentina, 1957-1987, 19. , Publicaciones Especiales de la Asociación Geológica Argentina, Serie B (Didáctica y Complementaria)
  • Linares, E., Valencio, D.A., Paleomagnetism and K-Ar ages of some trachybasaltic dykes from Río Los Molinos, Province of Córdoba, Republic of Argentina (1975) Journal of Geophysical Research, 80, pp. 3315-3321. , http://dx.doi.org/10.1029/JB080i023p03315
  • Mendía, J.E., Paleomagnetic study of alkaline vulcanites from Almafuerte, province of Cordoba, Argentina (1978) Geophysical Journal of the Royal Astronomical Society, 54, pp. 539-546. , http://dx.doi.org/10.1111/j.1365-246X.1978.tb05493.x
  • Moskowitz, B.M., Jackson, M., Kissel, C., Low temperature magnetic behavior of titanomagnetites (1998) Earth and Planetary Science Letters, 157, pp. 141-149. , http://dx.doi.org/10.1016/S0012-821X(98)00033-8
  • Oliva-Urcia, B., Kontny, A., Vahle, C., Schleicher, A.M., Modification of the magnetic mineralogy in basalts due to fluid-rock interactions in a high-temperature geothermal system (Krafla, Iceland) (2011) Geophysical Journal International, 186, pp. 155-174. , http://dx.doi.org/10.1111/j.1365-246X.2011.05029.x
  • O'Reilly, W., (1984) Rock and Mineral Magnetism, , http://dx.doi.org/10.1007/978-1-4684-8468-7, Glasgow, Blackie
  • Peters, C., Dekkers, M.J., Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size (2003) Physics and Chemistry of the Earth, 28, pp. 659-667. , http://dx.doi.org/10.1016/S1474-7065(03)00120-7
  • Petrovský, E., Kapička, A., On determination of the Curie point from thermomagnetic curves (2006) Journal of Geophysical Research, 111, p. B12S27. , http://dx.doi.org/10.1029/2006JB004507
  • Prévot, M., Mattern, E., Camps, P., Daignières, M., Evidence for a 20o tilting of the Earth's rotation axis 110 million years ago (2000) Earth and Planetary Science Letters, 179, pp. 517-528. , http://dx.doi.org/10.1016/S0012-821X(00)00129-1
  • Ramdohr, P., Ulvöspinel and its significance in titaniferous iron ores (1953) Economic Geology, 48, pp. 677-688. , http://dx.doi.org/10.2113/gsecongeo.48.8.677
  • Ramdohr, P., (1980) The Ore Minerals and their Intergrowths, , Oxford, Pergamon Press
  • Ramos, V.A., Escayola, M.P., Mutti, D.I., Vujovich, G.I., Dilek, Y., Moores, E.M., Elthon, D., Nicholas, A., Proterozoic-early Paleozoic ophiolites of the Andean basement of southern South America (2000) Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program, 349, pp. 331-349. , http://dx.doi.org/10.1130/0-8137-2349-3.331, Geological Society of America, Special Papers
  • Robertson, D.J., France, D.E., Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves (1994) Physics of the Earth and Planetary Interiors, 82, pp. 223-234. , http://dx.doi.org/10.1016/0031-9201(94)90074-4
  • Robinson, D., Bevins, R.E., Frey, M., Robinson, D., Patterns of regional low-grade metamorphism in metabasites (1998) Low-Grade Metamorphism, pp. 143-168. , http://dx.doi.org/10.1002/9781444313345.ch5, Oxford, Blackwell Science
  • Schmidt, C.J., Astini, R.A., Costa, C.H., Gardini, C.E., Kraemer, P.E., Tankard, A.J., Suárez Soruco, R., Welsink, H.J., Cretaceous rifting, alluvial fan sedimentation and Neogene inversion, southern Sierras Pampeanas, Argentina (1995) Petroleum Basins of South America, 62, pp. 341-357. , American Association of Petroleum Geologists, Memoirs
  • Spencer, K.J., Lindsley, D.H., A solution model for coexisting iron-titanium oxides (1981) American Mineralogist, 66, pp. 1189-1201
  • Steinthorsson, S., Helgason, Ö., Madsen, M.B., Bender Koch, C., Bentzon, M.D., Morup, S., Maghemite in Icelandic basalts (1992) Mineralogical Magazine, 56, pp. 185-199. , http://dx.doi.org/10.1180/minmag.1992.056.383.05
  • Tauxe, L., Kent, D.V., Channell, J.E.T., Kent, D.V., Lowrie, W., Meert, J.G., A simplified model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar? In (2004) Timescales of the Paleomagnetic Field, 145, pp. 101-115. , http://dx.doi.org/10.1029/145GM08, American Geophysical Union, Geophysical Monograph Series
  • Thompson, R., Oldfield, F., (1986) Environmental Magnetism, , http://dx.doi.org/10.1007/978-94-011-8036-8, London, Allen & Unwin
  • Torsvik, T.H., Müller, R.D., Van der Voo, R., Steinberger, B., Gaina, C., Global plate motion frames: towards a unified model (2008) Reviews of Geophysics, 46. , http://dx.doi.org/10.1029/20007RG000227
  • Torsvik, T.H., Van der Voo, R., Phanerozoic polar wander, palaeogeography and dynamics (2012) Earth-Science Reviews, 114, pp. 325-368. , http://dx.doi.org/10.1016/j.earscirev.2012.06.007
  • Uliana, M.A., Biddle, K.T., Cerdan, J., Tankard, A.J., Balkwill, H.R., Mesozoic extension and the formation of Argentine sedimentary basins (1990) Extensional Tectonics and Stratigraphy of the North Atlantic Margins, 46, pp. 599-614. , American Association of Petroleum Geologists, Memoirs
  • Vahle, C., Kontny, A., The use of field dependence of AC susceptibility for the interpretation of magnetic mineralogy and magnetic fabrics in the HSDP-2 basalts, Hawaii (2005) Earth and Planetary Science Letters, 238, pp. 110-129. , http://dx.doi.org/10.1016/j.epsl.2005.07.010
  • Valencio, D.A., Palaeomagnetism of the lower Cretaceous Vulcanitas Cerro Colorado Formation of the Sierra de Los Cóndores Group, province of Córdoba, Argentina (1972) Earth and Planetary Science Letters, 16, pp. 370-378. , http://dx.doi.org/10.1016/0012-821X(72)90154-9
  • Van der Voo, R., (1993) Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans, , Cambridge, Cambridge University Press
  • Van der Voo, R., Wu, F., Wang, Z., Dongwoo, S., Peacor, D.R., Qizhong, L., Paleomagnetism and electronic microscopy of the Emeishan basalts, Yunnan, China (1993) Tectonophysics, 221, pp. 367-379. , http://dx.doi.org/10.1016/0040-1951(93)90168-J
  • Vilas, J.F.A., Paleomagnetism of the Lower Cretaceous Sierra de los Condores Group, Cordoba province, Argentina (1976) Geophysical Journal of the Royal Astronomical Society, 46, pp. 295-305. , http://dx.doi.org/10.1111/j.1365-246X.1976.tb04159.x
  • Warner, R.D., Wasilewski, P., Magnetic petrology of arc xenoliths from Japan and Aleutian Islands (1997) Journal of Geophysical Research, 102, pp. 20225-20243. , http://dx.doi.org/10.1029/97JB01517
  • Watkins, N.D., Haggerty, S.E., Some magnetic properties and the possible petrogenetic significance of oxidized zones in an Icelandic olivine basalt (1965) Nature, 206, pp. 797-800. , http://dx.doi.org/10.1038/206797a0
  • Wilson, R.L., Further correlations between the petrology and the natural magnetic polarity of basalts (1966) Geophysical Journal of the Royal Astronomical Society, 10, pp. 413-420

Citas:

---------- APA ----------
Geuna, S.E., Lagorio, S.L. & Vizán, H. (2015) . Oxidation processes and their effects on the magnetic remanence of Early Cretaceous subaerial basalts from Sierra Chica de Córdoba, Argentina. Geological Society Special Publication, 396, 239-263.
http://dx.doi.org/10.1144/SP396.13
---------- CHICAGO ----------
Geuna, S.E., Lagorio, S.L., Vizán, H. "Oxidation processes and their effects on the magnetic remanence of Early Cretaceous subaerial basalts from Sierra Chica de Córdoba, Argentina" . Geological Society Special Publication 396 (2015) : 239-263.
http://dx.doi.org/10.1144/SP396.13
---------- MLA ----------
Geuna, S.E., Lagorio, S.L., Vizán, H. "Oxidation processes and their effects on the magnetic remanence of Early Cretaceous subaerial basalts from Sierra Chica de Córdoba, Argentina" . Geological Society Special Publication, vol. 396, 2015, pp. 239-263.
http://dx.doi.org/10.1144/SP396.13
---------- VANCOUVER ----------
Geuna, S.E., Lagorio, S.L., Vizán, H. Oxidation processes and their effects on the magnetic remanence of Early Cretaceous subaerial basalts from Sierra Chica de Córdoba, Argentina. Geol. Soc. Spec. Publ. 2015;396:239-263.
http://dx.doi.org/10.1144/SP396.13