Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Abstract Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate-strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation. © 2015 The Geological Society of London.

Registro:

Documento: Artículo
Título:Towards the definition of AMS facies in the deposits of pyroclastic density currents
Autor:Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.
Filiación:SESES, Northern Arizona University, Box 4099, Flagstaff, AZ 86011, United States
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 00-07 Main Mall, Vancouver, BC V6T 1Z4, Canada
Departamento de Geología, Instituto de Geofísica Daniel A. Valencio, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
United States Geological Survey, 35 Middlefield Road, MS910, Menlo Park, CA 94025, United States
Palabras clave:density current; facies analysis; ignimbrite; magnetic anisotropy; magnetic fabric; pyroclastic deposit
Año:2015
Volumen:396
Página de inicio:205
Página de fin:226
DOI: http://dx.doi.org/10.1144/SP396.8
Título revista:Geological Society Special Publication
Título revista abreviado:Geol. Soc. Spec. Publ.
ISSN:03058719
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03058719_v396_n_p205_Ort

Referencias:

  • Baer, E.M., Fisher, R.V., Fuller, M., Valentine, G., Turbulent transport and deposition of the Ito pyroclastic flow: determinations using anisotropy of magnetic susceptibility (1997) Journal of Geophysical Research, 102, pp. 22565-22586
  • Branney, M.J., Kokelaar, B.P., A reappraisal of ignimbrite emplacement: changes from particulate to non-particulate flow during progressive aggradation of high-grade ignimbrite (1992) Bulletin of Volcanology, 54, pp. 504-520
  • Branney, M.J., Kokelaar, B.P., (2002) Pyroclastic Density Currents and the Sedimentation of Ignimbrites, 27. , Geological Society, London, Memoirs
  • Burgisser, A., Bergantz, G.W., Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents (2002) Earth and Planetary Science Letters, 202, pp. 405-418
  • Cagnoli, B., Tarling, D.H., The reliability of anisotropy of magnetic susceptibility (AMS) data as flow direction indicators in friable base surge and ignimbrite deposits: Italian examples (1997) Journal of Volcanology and Geothermal Research, 75, pp. 309-320
  • Cañon-Tapia, E., Single grain v. distribution anisotropy: a simple three-dimensional model (1996) Physics of the Earth and Planetary Interiors, 94, pp. 149-158
  • Chough, S.K., Sohn, Y.K., Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea (1990) Sedimentology, 37, pp. 1115-1135
  • Choux, C.M., Druitt, T.H., Analogue study of particle segregation in pyroclastic density currents, with implications for the emplacement mechanisms of large ignimbrites (2002) Sedimentology, 49, pp. 907-928
  • Dellino, P., Isaia, R., La Volpe, L., Orsi, G., Interaction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy) (2004) Journal of Volcanology and Geothermal Research, 133, pp. 193-210. , http://dx.doi.org/10.1016/S0377-0273(03)00398-6
  • Dellino, P., Mele, D., Sulpizio, R., La Volpe, L., Braia, G., A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics (2008) Journal of Geophysical Research, 113. , http://dx.doi.org/10.1029/2007JB005365
  • Delpino, D., Bermúdez, A., La actividad del Volcán Copahue durante 1992. Erupción con emisiones de azufre piroclástico, Provincia del Neuquén, Argentina (1993), pp. 292-301. , XII Congreso Geológico Argentino y II Congreso de Exploracion de Hidrocarburos, Mendoza, Actas, IV, Buenos Aires, Asociación Geológica Argentina; Ellwood, B.B., Estimates of flow direction for calc-alkaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: Central San Juan Mountains, southwest Colorado (1982) Earth and Planetary Sciences Letters, 59, pp. 303-314
  • Fisher, R.A., Dispersion on a sphere (1953) Proceedings of the Royal Society of London, A217, pp. 295-305
  • Fisher, R.V., Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens, Washington (1990) Geological Society of America Bulletin, 102, pp. 1038-1054
  • Fisher, R.V., Decoupling of pyroclastic currents: hazards assessments (1995) Journal of Volcanology and Geothermal Research, 66, pp. 257-263
  • Fisher, R.V., Schmincke, H.-U., (1984) Pyroclastic Rocks, , Berlin, Springer
  • Fisher, R.V., Orsi, G., Ort, M., Heiken, G., Mobility of a large-volume pyroclastic flow - Emplacement of the Campanian Ignimbrite, Italy (1993) Journal of Volcanology and Geothermal Research, 56, pp. 205-220
  • Folguera, A., Ramos, V.A., Control estructural del volcán Copahue (38 °S-71 °O): implicancias tectónicas para el arco volcánico cuaternario (36-39 °S) (2000) Revista de la Asociación Geológica Argentina, 55, pp. 229-244
  • Geissman, J.W., Holm, D., Harlan, S.S., Embree, G.F., Rapid, high-temperature formation of large-scale rheomorphic structures in the 2.06 Ma Huckleberry Ridge Tuff, Idaho, USA (2010) Geology, 38, pp. 263-266. , http://dx.doi.org/10.1130/G30492.1
  • Grunder, A., Russell, J.K., Welding processes in volcanology: insights from field, experimental, and modeling studies (2005) Journal of Volcanology and Geothermal Research, 142, pp. 1-9. , http://dx.doi.org/10.1016/j.jvolgeores.2004.10.010
  • Gurioli, L., Zanella, E., Pareschi, M.T., Lanza, R., Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition (2007) Journal of Geophysical Research, 112. , http://dx.doi.org/10.1029/2006JB004444
  • Hagstrum, J.T., Lipman, P.W., Elston, D.P., Paleomagnetic evidence bearing on the structural development of the Latir volcanic field near Questa, New Mexico (1982) Journal of Geophysical Research, 87, pp. 7833-7842
  • Hargraves, R.B., Johnson, D., Chan, C.Y., Distribution anisotropy: the cause of AMS in igneous rocks? (1991) Geophysical Research Letters, 18, pp. 2193-2196
  • Hillhouse, J.W., Wells, R.E., Magnetic fabric, flow directions, and source area of the lower Miocene Peach Springs Tuff in Arizona, California, and Nevada (1991) Journal of Geophysical Research, 96, pp. 12443-12460
  • Jackson, J.A., (1997) Glossary of Geology, , 4th edn, Alexandria, VA, American Geological Institute
  • Jelinek, V., (1977) The Statistical Theory of Measuring Anisotropy of Magnetic Susceptibility of Rocks and its Application, , Geofyzika Brno, Institute of Geophysics Report
  • Kamata, H., Mimura, K., Flow directions inferred from imbrication in the Handa pyroclastic flow deposit in Japan (1983) Bulletin of Volcanology, 46, pp. 277-282
  • Le Pennec, J.-L., Chen, Y., Diot, H., Froger, J.-L., Gourgaud, A., Interpretation of anisotropy of magnetic susceptibility of ignimbrites in terms of kinematic and sedimentological mechanisms: an Anatolian case-study (1998) Earth and Planetary Science Letters, 157, pp. 105-127. , http://dx.doi.org/10.1016/S0012-821x(97)00215-X
  • Lesti, C., Porreca, M., High temperature emplacement of the Cerro Galán and Toconquis Group ignimbrites (Puna plateau, NW Argentina) determined by TRM analyses (2011) Bulletin of Volcanology, 73, pp. 1535-1565. , http://dx.doi.org/10.1007/s00445-011-0536-2
  • Linares, E., Ostera, H.A., Mas, L.C., Cronología potasio-argón del Complejo Efusivo Copahue-Caviahue, Provincia de Neuquén (1999) Revista de la Asociación Geológica Argentina, 54, pp. 240-247
  • Lipman, P.W., Dungan, M.A., Brown, L.L., Deino, A., Recurrent eruption and subsidence at the Platoro caldera complex, southeastern San Juan volcanic field, Colorado: new tales from old tuffs (1996) Geological Society of America Bulletin, 108, pp. 1039-1055
  • MacDonald, W.D., Palmer, H.C., Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles caldera, New Mexico, USA (1990) Bulletin of Volcanology, 53, pp. 45-59
  • Mazzoni, M.M., Licitra, D.T., Significado estratigráfico y volcanológico de depósitos de flujos piroclásticos Neógenos con composición intermedia en la zona del Lago Caviahue, Provincia del Neuquén (2000) Revista de la Asociación Geológica Argentina, 55, pp. 188-200
  • Newkirk, T.N., Anisotropy of magnetic susceptibility of phreatomagmatic surge deposits, Hopi Buttes, Navajo Nation, Arizona, USA (2009), Northern Arizona University, MSc thesis; Ort, M.H., Eruptive processes and caldera formation in a nested downsag-collapse caldera: Cerro Panizos, central Andes Mountains (1993) Journal of Volcanology and Geothermal Research, 56, pp. 221-252
  • Ort, M.H., Dallegge, T.A., Vazquez, J.A., White, J.D.L., Duebendorfer, E.M., Volcanism and sedimentation in the Mio-Pliocene Bidahochi Formation, Navajo Nation, northeastern Arizona (1998) Geologic Excursions in Northern and Central Arizona, pp. 35-57. , Boulder, CO, Geological Society of America
  • Ort, M.H., Rosi, M., Anderson, C.A., Correlation of deposits and vent locations of the proximal Campanian Ignimbrite deposits, Campi Flegrei, Italy, based on natural remanent magnetization and anisotropy of magnetic susceptibility characteristics (1999) Journal of Volcanology and Geothermal Research, 91, pp. 167-178
  • Ort, M.H., Orsi, G., Pappalardo, L., Fisher, R.V., Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian Ignimbrite, Italy (2003) Bulletin of Volcanology, 65, pp. 55-72. , http://dx.doi.org/10.1007/s00445-002-0241-2
  • Palmer, H.C., MacDonald, W.D., Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations (1999) Tectonophysics, 307, pp. 207-218
  • Palmer, H.C., MacDonald, W.D., Hayatsu, A., Magnetic, structural and geochronologic evidence bearing on volcanic sources and Oligocene deformation of ash flow tuffs, northeast Nevada (1991) Journal of Geophysical Research, 96, pp. 2185-2202
  • Pioli, L., Rosi, M., Rheomorphic structures in a high-grade ignimbrite: the Nuraxi tuff, Sulcis volcanic district (SW Sardinia, Italy) (2005) Journal of Volcanology and Geothermal Research, 142, pp. 11-28. , http://dx.doi.org/10.1016/j.volgreores.2004.10.011
  • Pioli, L., Lanza, R., Ort, M.H., Rosi, M., Magnetic fabric, welding texture and strain fabric in the Nuraxi tuff, Sardinia, Italy (2008) Bulletin of Volcanology, 70, pp. 1123-1137. , http://dx.doi.org/10.1007/s00445-008-0194-1
  • Porreca, M., Mattei, M., Giordano, G., De Rita, D., Funiciello, R., Magnetic fabric and implications for pyroclastic flow and lahar emplacement, Albano maar, Italy (2003) Journal of Geophysical Research, 108, pp. 22-64. , http://dx.doi.org/10.1029/2002JB002102
  • Schlinger, C.M., Rosenbaum, J.G., Veblen, D.R., Fe-oxide microcrystals in welded tuff from southern Nevada: origin of remanence carriers by precipitation in volcanic glass (1988) Geology, 16, pp. 556-559
  • Sohn, Y.K., Chough, S.K., Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea) (1989) Sedimentology, 36, pp. 837-855
  • Sohn, Y.K., Son, M., Jeong, J.O., Jeon, Y.M., Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea) (2009) Sedimentary Geology, 220, pp. 190-203. , http://dx.doi.org/10.1016/j.sedgeo.2009.04.020
  • Sohn, Y.K., Cronin, S.J., Ilchulbong tuff cone, Jeju Island, Korea, revisited: a compound monogenetic volcano involving multiple magma pulses, shifting vents, and discrete eruptive phases (2012) Geological Society of America Bulletin, 124, pp. 259-274. , http://dx.doi.org/10.1130/B30447.1
  • Sulpizio, R., Mele, D., Dellino, P., La Volpe, L., Deposits and physical properties of pyroclastic density currents during complex Subplinian eruptions: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy (2007) Sedimentology, 54, pp. 607-635. , http://dx.doi.org/10.1111/j.1365-3091.2006.00852.x
  • Suzuki, K., Ui, T., Grain orientation and depositional ramps as flow direction indicators of large-scale pyroclastic flow deposits, Japan (1982) Geology, 10, pp. 429-432
  • Thomas, I.M., Moyer, T.C., Wikswo Jr, J.P., High resolution magnetic susceptibility imaging of geological thin sections: pilot study of a pyroclastic sample from the Bishop Tuff, California, U.S.A (1992) Geophysical Research Letters, 19, pp. 2139-2142
  • Varekamp, J.C., Maarten De Moor, J., Merrill, M.D., Colvin, A.S., Goss, A.R., Vroon, P.Z., Hilton, D.R., Ramos, V.A., Geochemistry and isotopic characteristics of the Caviahue-Copahue volcanic complex, Province of Neuquén, Argentina (2006) Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°-39 °S lat), 407, pp. 317-342. , http://dx.doi.org/10.1130/2006.2407(15), Geological Society of America, Boulder, Special Paper
  • Vazquez, J.A., (1998) Maar volcanism in the Wood Chop Mesa area, Hopi Buttes volcanic field, Navajo Nation, Arizona, , Northern Arizona University, MSc thesis
  • Vazquez, J.A., Ort, M.H., Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA (2006) Journal of Volcanology and Geothermal Research, 154, pp. 222-236. , http://dx.doi.org/10.1016/j.jvolgeores.2006.01.003
  • Wells, R.E., Hillhouse, J.W., Paleomagnetism and tectonic rotation of the lower Miocene Peach Springs Tuff: Colorado Plateau, Arizona, to Barstow, California (1989) Geological Society of America Bulletin, 101, pp. 846-863
  • Wilson, C.J.N., Hildreth, W., Assembling an ignimbrite: mechanical and thermal building blocks in the Bishop Tuff, California (2003) Journal of Geology, 111, pp. 653-670
  • Wilson, C.J.N., Houghton, B.F., Sigurdsson, H., Pyroclast transport and deposition (2000) Encyclopedia of Volcanoes, pp. 545-554. , San Diego, CA, Academic Press
  • Wilson, C.J.N., Walker, G.P.L., Ignimbrite depositional facies: the anatomy of a pyroclastic flow (1982) Journal of the Geological Society, London, 139, pp. 581-592
  • Wohletz, K.H., Sheridan, M.F., Chapin, C.E., Elston, W.E., A model of pyroclastic surge (1979) Ash-Flow Tuffs, 180, pp. 177-194. , Geological Society of America, Boulder, Special Papers
  • Wolff, J.A., Ellwood, B.B., Sachs, S.D., Anisotropy of magnetic susceptibility in welded tuffs: application to a welded-tuff dyke in the Tertiary Trans-Pecos Texas volcanic province, USA (1989) Bulletin of Volcanology, 51, pp. 299-310
  • Zanella, E., Gurioli, L., Lanza, R., Sulpizio, R., Bontempi, M., Deposition temperature of the AD 472 Pollena pyroclastic density current deposits, Somma-Vesuvius, Italy (2008) Bulletin of Volcanology, 70, pp. 1237-1248. , http://dx.doi.org/10.1007/s00445-008-0199-9

Citas:

---------- APA ----------
Ort, M.H., Newkirk, T.T., Vilas, J.F. & Vazquez, J.A. (2015) . Towards the definition of AMS facies in the deposits of pyroclastic density currents. Geological Society Special Publication, 396, 205-226.
http://dx.doi.org/10.1144/SP396.8
---------- CHICAGO ----------
Ort, M.H., Newkirk, T.T., Vilas, J.F., Vazquez, J.A. "Towards the definition of AMS facies in the deposits of pyroclastic density currents" . Geological Society Special Publication 396 (2015) : 205-226.
http://dx.doi.org/10.1144/SP396.8
---------- MLA ----------
Ort, M.H., Newkirk, T.T., Vilas, J.F., Vazquez, J.A. "Towards the definition of AMS facies in the deposits of pyroclastic density currents" . Geological Society Special Publication, vol. 396, 2015, pp. 205-226.
http://dx.doi.org/10.1144/SP396.8
---------- VANCOUVER ----------
Ort, M.H., Newkirk, T.T., Vilas, J.F., Vazquez, J.A. Towards the definition of AMS facies in the deposits of pyroclastic density currents. Geol. Soc. Spec. Publ. 2015;396:205-226.
http://dx.doi.org/10.1144/SP396.8