Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background and Aims: Salix nigra seeds are desiccation-tolerant, as are orthodox seeds, although in contrast to other orthodox seeds they lose viability in a few weeks at room temperature. They also differ in that the chloroplasts of the embryo tissues conserve their chlorophyll and endomembranes. The aim of this paper was to investigate the role of chlorophyll in seed deterioration. Methods: Seeds were aged at different light intensities and atmospheric conditions. Mean germination time and normal and total germination were evaluated. The formation of free radicals was assessed using electronic spin resonance spectroscopy, and changes in the fatty acid composition from phospholipids, galactolipids and triglycerides using gas-liquid chromatography. Membrane integrity was studied with electronic spin resonance spin probe techniques, electrolyte leakage and transmission electron microscopy. Key Results: Light and oxygen played an important role in free-radical generation, causing a decrease in normal germination and an increase in mean germination time. Both indices were associated with a decrease in polyunsaturated fatty acids derived from membrane lipids as phospholipids and galactolipids. The detection of damage in thylakoid membranes and an increase in plasmalemma permeability were consistent with the decrease in both types of lipids. Triglycerides remained unchanged. Light-induced damage began in outermost tissues and spread inwards, decreasing normal germination. Conclusions: Salix nigra seeds were very susceptible to photooxidation. The thylakoid membranes appeared to be the first target of the photooxidative process since there were large decreases in galactolipids and both these lipids and the activated chlorophyll are contiguous in the structure of that membrane. Changes in normal germination and mean germination time could be explained by the deteriorative effects of oxidation. © The Author 2010.

Registro:

Documento: Artículo
Título:Effects of photooxidation on membrane integrity in Salix nigra seeds
Autor:Roqueiro, G.; Facorro, G.B.; Huarte, M.G.; Rubín De Celis, E.; García, F.; Maldonado, S.; Maroder, H.
Filiación:Instituto de Recursos Biológicos, INTA-Castelar, B1712WAA Hurlingham, Argentina
Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP). CONICET-UNLP, 1900 La Plata, Argentina
Departamento de Ciencias Básicas, Universidad Nacional de Luján, 6700 Luján, Argentina
Palabras clave:Embryo membrane integrity; Free radicals; Orthodox seed; Photooxidation; Salicaceae seeds; Salix nigra; Seed chlorophyll; Seed lipid peroxidation; Thylakoids; Willow seeds; chlorophyll; oxygen; chlorophyll; chloroplast; deciduous tree; desiccation; embryo; fatty acid; free radical; germination; light intensity; lipid; liquid chromatography; membrane; permeability; photooxidation; seed; spectroscopy; temperature effect; tolerance; transmission electron microscopy; adaptation; article; light; membrane; metabolism; methodology; nuclear magnetic resonance spectroscopy; oxidation reduction reaction; photochemistry; physiology; plant seed; radiation exposure; willow; Adaptation, Physiological; Chlorophyll; Light; Magnetic Resonance Spectroscopy; Membranes; Oxidation-Reduction; Oxygen; Photochemistry; Salix; Seeds; Salicaceae; Salix; Salix nigra; Salicaceae; Salix; Salix nigra
Año:2010
Volumen:105
Número:6
Página de inicio:1027
Página de fin:1034
DOI: http://dx.doi.org/10.1093/aob/mcq067
Título revista:Annals of Botany
Título revista abreviado:Ann. Bot.
ISSN:03057364
CODEN:ANBOA
CAS:chlorophyll, 1406-65-1, 15611-43-5; oxygen, 7782-44-7; Chlorophyll, 1406-65-1; Oxygen, 7782-44-7
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_03057364_v105_n6_p1027_Roqueiro.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03057364_v105_n6_p1027_Roqueiro

Referencias:

  • Arnon, D.I., Copper enzymes in isolated cloroplasts: Polyphenol oxidase in Beta vulgaris (1949) Plant Physiology, 24, pp. 1-15
  • Asada, K., Production and action of active oxygen species in photosynthetic tissues (1994) Cause of Photooxidative Stress and Amelioration of Defense System in Plants, pp. 77-104. , Foyer CH, Mullineaux PM. Eds, Boca Raton, FL: CRC Press
  • Bailly, C., Active oxygen species and antioxidants in seed biology (2004) Seed ScienceResearch, 14, pp. 93-107
  • Benson, E.E., (1990) Free Radicals Damage in Stored Plant Germoplasm, , Rome: International Board or Plant Genetic Resources
  • Cheng, M., McPhee, K.E., Baik, B., Bleaching of green peas and changes in enzyme activities of seeds under simulated climatic conditions (2004) Journal of Food Science, 69, pp. 511-518
  • Chitnis, P.R., Photosystem i (1996) Plant Physiology, 111, pp. 661-669
  • Chiu, K.Y., Wang, C.S., Sung, J.M., Lipid peroxidation and peroxide-scavenging enzymes associated with accelerated aging and hydration of watermelon seeds differing in ploid (1995) Physiologia Plantarum, 94, pp. 441-446
  • Corbineau, F., Gay-Mathieu, C., Vinel, D., Com̂e, D., Decrease in sunflower (Helianthus annuus) seed viability caused by high temperature as related to energy metabolism, membrane damage and lipid composition (2002) Physiologia Plantarum, 116, pp. 489-496
  • Dalton, D.A., Antioxidant defenses of plants and fungi (1995) Oxidative Stress and Antioxidant Defenses in Biology, pp. 298-355. , Ahmad S. ed., New York, NY: Chapman and Hall
  • Ellis, R.H., Roberts, E.H., The influence of temperature and moisture on seed viability period in barley (Hordeum distichum L.) (1980) Annals of Botany, 45, pp. 31-37
  • Ellis, R.H., Roberts, E.H., The quantification of ageing and survival in orthodox seeds (1981) Seed Science and Technology, 9, pp. 373-409
  • Folch, J., Lees, M., Stanley, G.H.S., A simple method for the isolation and purification of total lipids from animal tissues (1957) Journal of Biological Chemistry, 226, pp. 497-509
  • Foyer, C.H., Free radical processes in plants (1996) Biochemical Society Transactions, 24, pp. 427-433
  • Golbeck, J.H., Structure and function of photosystem i (1992) Annual Review of Plant Physiology and Plant Molecular Biology, 43, pp. 293-324
  • Golovina, E.A., Tikhonov, A.N., The structural differences between the embryos of viable and nonviable wheat seeds as studied with the ESR spectroscopy of lipid soluble spin labels (1994) Biochimica et Biophysica Acta, 1190, pp. 385-392
  • Golovina, E.A., Tikhonov, A.N., Hoekstra, F.A., An electron paramagnetic resonance spin-probe study of membrane permeability changes with seed aging (1997) Plant Physiology, 114, pp. 383-389
  • Halliwell, B., Gutteridge, J.M.C., (1999) Free Radical in Biology and Medicine, , 3rd edn New York, NY: Oxford University Press
  • Inskeep, W.P., Bloom, P.R., Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone (1985) Plant Physiology, 77, pp. 483-485
  • Justin, O.L., Bass, L.N., Principles and practices of seed storage (1978) US Dept of Agriculture Handbook No. 506, pp. 57-77
  • Leprince, O., Buitinik, J., Hoekstra, F.A., Axes and cotyledons of recalcitrant seeds of Castanea sativa Mill. exhibit contrasting responses of respiration to drying in relation to desiccation sensitivity (1999) Journal of Experimental Botany, 50, pp. 1515-1524
  • Lichtenthaler, H.K., Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes (1987) Methods in Enzymology, 148, pp. 350-382
  • McDonald, M.B., Seed deterioration: Physiology, repair and assessment (1999) Seed Science and Technology, 27, pp. 177-237
  • Maroder, H.L., Prego, I.A., Facciuto, G.R., Maldonado, S.B., Storage behaviour of Salix alba and Salix matsudana seeds (2000) Annals of Botany, 86, pp. 1017-1021
  • Maroder, H.L., Prego, I.A., Maldonado, S.B., Histochemical and ultrastructural studies on Salíx alba and Salíx matsudana seeds (2003) Trees, 17, pp. 193-199
  • Nandi, S., Sen-Mandi, S., Sinha, T.P., Active oxygen and their scavengers in rice seeds (Oryza sativa cv. IET 4094) aged under tropical environmental conditions (1997) Seed Science Research, 7, pp. 253-259
  • Ohlrogge, J.B., Kernan, T.P., Oxygen-dependent aging of seeds (1982) Plant Physiology, 70, pp. 791-794
  • Ponquett, R.T., Smith, M.T., Ross, G., Lipid autoxidation and seed ageing: Putative relationships between seed longevity and lipids stability (1992) Seed Science Research, 2, pp. 51-54
  • Priestley, D.A., (1986) Seed Aging: Implications for Seed Storage and Persistence in the Soil, , Ithaca, NY: Cornell University Press
  • Priestley, D.A., Leopold, A.C., Lipid changes during natural aging of soybean seeds (1983) Physiologia Plantarum, 59, pp. 467-470
  • Pukacka, S., Kuiper, P.J.C., Phospholipid composition and fatty acid peroxidation during ageing of Acer platanoides seeds (1988) Physiologia Plantarum, 72, pp. 89-93
  • Roberts, E.H., Loss of viability: Ultrastructural and physiological aspects (1973) Seed Science and Technology, 1, pp. 29-34
  • Seel, W.E., Hendry, G.A.F., Atherton, N.R., Lee, J.A., Radical formation and accumulation in vivo, in desiccation-tolerant and intolerant mosses (1991) Free Radical Research Communications, 15, pp. 133-141
  • Shibuya, I., Maruo, B., Benson, A.A., Sulfolipid localization in lamellar lipoprotein (1965) Plant Physiology, 40, pp. 1251-1256
  • Smith, M.T., Berjak, P., Deteriorative changes associated with the loss viability of stored desiccation tolerant and desiccation-sensitive seeds (1995) Seed Development and Germination, pp. 701-746. , Kigel J, Galili G. eds, New York, NY: Marcel Dekker
  • Vertucci, C.W., Farrant, J.M., Acquisition and loss of desiccation tolerance (1995) Seed Development and Germination, pp. 237-271. , Kigel J, Galili G. eds, New York, NY: Marcel Dekker
  • Vertucci, C.W., Ellenson, J.L., Leopold, A.C., Chlorophyll fluorescence characteristics associated with hydration level in pea cotyledons (1985) Plant Physiology, 79, pp. 248-252
  • Wilson, D.O., McDonald, M.B., The lipid peroxidation model of seed ageing (1986) Seed Science and Technology, 14, pp. 269-300
  • Wintermans, J.F.G.M., Concentrations of phosphatides and glycolipids in leaves and chloroplasts (1960) Biochimica et Biophysica Acta, 44, pp. 49-54
  • Wojtyla, L., Garnczarska, M., Zalewski, T., Bednarski, W., Ratajczak, L., Jurga, S., A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds (2006) Journal of Plant Physiology, 16, pp. 1207-1220

Citas:

---------- APA ----------
Roqueiro, G., Facorro, G.B., Huarte, M.G., Rubín De Celis, E., García, F., Maldonado, S. & Maroder, H. (2010) . Effects of photooxidation on membrane integrity in Salix nigra seeds. Annals of Botany, 105(6), 1027-1034.
http://dx.doi.org/10.1093/aob/mcq067
---------- CHICAGO ----------
Roqueiro, G., Facorro, G.B., Huarte, M.G., Rubín De Celis, E., García, F., Maldonado, S., et al. "Effects of photooxidation on membrane integrity in Salix nigra seeds" . Annals of Botany 105, no. 6 (2010) : 1027-1034.
http://dx.doi.org/10.1093/aob/mcq067
---------- MLA ----------
Roqueiro, G., Facorro, G.B., Huarte, M.G., Rubín De Celis, E., García, F., Maldonado, S., et al. "Effects of photooxidation on membrane integrity in Salix nigra seeds" . Annals of Botany, vol. 105, no. 6, 2010, pp. 1027-1034.
http://dx.doi.org/10.1093/aob/mcq067
---------- VANCOUVER ----------
Roqueiro, G., Facorro, G.B., Huarte, M.G., Rubín De Celis, E., García, F., Maldonado, S., et al. Effects of photooxidation on membrane integrity in Salix nigra seeds. Ann. Bot. 2010;105(6):1027-1034.
http://dx.doi.org/10.1093/aob/mcq067