Artículo

Sosa, E.J.; Burguener, G.; Lanzarotti, E.; Defelipe, L.; Radusky, L.; Pardo, A.M.; Marti, M.; Turjanski, A.G.; Fernández Do Porto, D. "Target-Pathogen: A structural bioinformatic approach to prioritize drug targets in pathogens" (2018) Nucleic Acids Research. 46(D1):D413-D418
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Available genomic data for pathogens has created new opportunities for drug discovery and development to fight them, including new resistant and multiresistant strains. In particular structural data must be integrated with both, gene information and experimental results. In this sense, there is a lack of an online resource that allows genome wide-based data consolidation from diverse sources together with thorough bioinformatic analysis that allows easy filtering and scoring for fast target selection for drug discovery. Here, we present Target-Pathogen database (http://target.sbg.qb.fcen.uba.ar/patho), designed and developed as an online resource that allows the integration and weighting of protein information such as: Function, metabolic role, off-targeting, structural properties including druggability, essentiality and omic experiments, to facilitate the identification and prioritization of candidate drug targets in pathogens. We include in the database 10 genomes of some of the most relevant microorganisms for human health (Mycobacterium tuberculosis, Mycobacterium leprae, Klebsiella pneumoniae, Plasmodium vivax, Toxoplasma gondii, Leishmania major, Wolbachia bancrofti, Trypanosoma brucei, Shigella dysenteriae and Schistosoma Smanosoni) and show its applicability. New genomes can be uploaded upon request. © 2017 The Author(s).

Registro:

Documento: Artículo
Título:Target-Pathogen: A structural bioinformatic approach to prioritize drug targets in pathogens
Autor:Sosa, E.J.; Burguener, G.; Lanzarotti, E.; Defelipe, L.; Radusky, L.; Pardo, A.M.; Marti, M.; Turjanski, A.G.; Fernández Do Porto, D.
Filiación:IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Plataforma de Bioinformática Argentina, Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428, Argentina
Palabras clave:Article; controlled study; drug targeting; gene sequence; Klebsiella pneumoniae; Leishmania major; Mycobacterium leprae; Mycobacterium tuberculosis; nonhuman; Plasmodium vivax; priority journal; Schistosoma mansoni; Shigella dysenteriae; structural bioinformatics; Toxoplasma gondii; Trypanosoma brucei; Wolbachia; Wolbachia bancrofti
Año:2018
Volumen:46
Número:D1
Página de inicio:D413
Página de fin:D418
DOI: http://dx.doi.org/10.1093/nar/gkx1015
Título revista:Nucleic Acids Research
Título revista abreviado:Nucleic Acids Res.
ISSN:03051048
CODEN:NARHA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03051048_v46_nD1_pD413_Sosa

Referencias:

  • Martens, E., Demain, A.L., The antibiotic resistance crisis, with a focus on the United States (2017) J. Antibiot., 70, pp. 520-526
  • Fernandes, P., The global challenge of new classes of antibacterial agents: An industry perspective (2015) Curr. Opin. Pharmacol., 24, pp. 7-11
  • Wenzel, R.P., The antibiotic pipeline-challenges, costs, values (2004) N. Engl. J. Med., 351, pp. 523-526
  • Pundir, S., Magrane, M., Martin, M.J., O'Donovan, C., Searching and navigating UniProt Databases (2015) Curr. Protoc. Bioinform., p. 50. , The UniProt Consortium
  • Wheeler, T.J., Eddy, S.R., Nhmmer: DNA homology search with profile HMMs (2013) Bioinformatics, 29, pp. 2487-2489
  • Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Sangrador-Vegas, A., The Pfam protein families database: Towards a more sustainable future (2016) Nucleic Acids Res., 44, pp. D279-D285
  • Furnham, N., Holliday, G.L., De Beer, T.A.P., Jacobsen, J.O.B., Pearson, W.R., Thornton, J.M., The Catalytic Site Atlas 2.0: Cataloging catalytic sites and residues identified in enzymes (2013) Nucleic Acids Res., 42, pp. D485-D489
  • Hopkins, A.L., Groom, C.R., The druggable genome (2002) Nat. Rev. Drug Discov., 1, pp. 727-730
  • Cheng, A.C., Coleman, R.G., Smyth, K.T., Cao, Q., Soulard, P., Caffrey, D.R., Salzberg, A.C., Huang, E.S., Structure-based maximal affinity model predicts small-molecule druggability (2007) Nat. Biotechnol., 25, pp. 71-75
  • Xie, L., Bourne, P.E., A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand binding sites (2007) BMC Bioinformatics, 8, p. S9
  • Schmidtke, P., Le Guilloux, V., Maupetit, J., Tufféry, P., Fpocket: Online tools for protein ensemble pocket detection and tracking (2010) Nucleic Acids Res., 38, pp. W582-W589
  • Schmidtke, P., Barril, X., Understanding and predicting druggability. A high-throughput method for detection of drug binding sites (2010) J. Med. Chem., 53, pp. 5858-5867
  • Radusky, L., Defelipe, L.A., Lanzarotti, E., Luque, J., Barril, X., Marti, M.A., Turjanski, A.G., TuberQ: A Mycobacterium tuberculosis protein druggability database (2014) Database, 2014, p. 35
  • Defelipe, L.A., Do Porto, D.F., Pereira Ramos, P.I., Nicolás, M.F., Sosa, E., Radusky, L., Lanzarotti, E., Marti, M.A., A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis (2016) Tuberculosis, 97, pp. 181-192
  • Zhang, R., DEG: A database of essential genes (2004) Nucleic Acids Res., 32, pp. D271-D272
  • Luo, H., Lin, Y., Gao, F., Zhang, C.-T., Zhang, R., DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements (2014) Nucleic Acids Res., 42, pp. D574-D580
  • Barh, D., Gupta, K., Jain, N., Khatri, G., Léon-Sicairos, N., Canizalez-Roman, A., Tiwari, S., Hassan, S.S., Conserved host-pathogen PPIs: Globally conserved inter-species bacterial PPIs based conserved host-pathogen interactome derived novel target in C. pseudotuberculosis, C. diphtheriae, M. tuberculosis, C. ulcerans, Y. pestis, E. coli targeted by Piper betel compounds (2013) Integr. Biol., 5, pp. 495-509
  • Barh, D., Jain, N., Tiwari, S., Parida, B.P., D'Afonseca, V., Li, L., Ali, A., De Castro Soares, S., A novel comparative genomics analysis for common drug and vaccine targets in Corynebacterium pseudotuberculosis and other CMN group of human pathogens (2011) Chem. Biol. Drug Des., 78, pp. 73-84
  • Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., Asai, K., Bessieres, P., Essential Bacillus subtilis genes (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 4678-4683
  • Albert, R., Scale-free networks in cell biology (2005) J. Cell Sci., 118, pp. 4947-4957
  • Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B., Computational analysis of Plasmodium falciparum metabolism: Organizing genomic information to facilitate drug discovery (2004) Genome Res., 14, pp. 917-924
  • Lacroix, V., Cottret, L., Thébault, P., Sagot, M.-F., An introduction to metabolic networks and their structural analysis (2008) IEEE/ACM Trans. Comput. Biol. Bioinform., 5, pp. 594-617
  • Karp, P.D., Latendresse, M., Paley, S.M., Krummenacker, M., Ong, Q.D., Billington, R., Kothari, A., Subhraveti, P., Pathway Tools version 19.0 update: Software for pathway/genome informatics and systems biology (2016) Brief. Bioinform., 17, pp. 877-890
  • Russell, J., Cohn, R., (2012) Cytoscape Book On Demand Limited, , California
  • Skinner, M.E., Uzilov, A.V., Stein, L.D., Mungall, C.J., Holmes, I.H., J Browse: A next-generation genome browser (2009) Genome Res., 19, pp. 1630-1638
  • Bairoch, A., The ENZYME database in 2000 (2000) Nucleic Acids Res., 28, pp. 304-305
  • The Gene Ontology (GO) database and informatics resource (2004) Nucleic Acids Res., 32, pp. D258-D261. , Gene Ontology Consortium and Gene Ontology Consortium
  • Ondov, B.D., Bergman, N.H., Phillippy, A.M., Interactive metagenomic visualization in a web browser (2011) BMC Bioinformatics, 12, p. 385
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 33-38
  • Tiwari, N., Gedda, M.R., Tiwari, V.K., Singh, S.P., Singh, R.K., Limitations of current therapeutic options, possible drug targets and scope of natural products in control of leishmaniasis (2017) Mini Rev. Med. Chem., 17, pp. 182-189
  • Chawla, B., Madhubala, R., Drug targets in Leishmania (2010) J. Parasit. Dis., 34, pp. 1-13
  • Naula, C., Parsons, M., Mottram, J.C., Protein kinases as drug targets in trypanosomes and Leishmania (2005) Biochim. Biophys. Acta, 1754, pp. 151-159
  • Brumlik, M.J., Pandeswara, S., Ludwig, S.M., Murthy, K., Curiel, T.J., Parasite mitogen-activated protein kinases as drug discovery targets to treat human protozoan pathogens (2011) J. Signal Transduct., 2011, p. 971968
  • Barry, C.E., Crick, D.C., McNeil, M.R., Targeting the formation of the cell wall core of M. tuberculosis (2007) Infect. Disord. Drug Targets, 7, pp. 182-202
  • Raman, K., Yeturu, K., Chandra, N., TargetTB: A target identification pipeline for Mycobacterium tuberculosis through an interactome reactome and genome-scale structural analysis (2008) BMC Syst. Biol., 2, p. 109
  • Zavascki, A.P., Goldani, L.Z., Li, J., Nation, R.L., Polymyxin B for the treatment of multidrug-resistant pathogens: A critical review (2007) J. Antimicrob. Chemother., 60, pp. 1206-1215
  • Ramos, P.I.P., Custódio, M.G.F., Quispe Saji, G.D.R., Cardoso, T., Da Silva, G.L., Braun, G., Martins, W.M.B.S., Fernández, E., The polymyxin B-induced transcriptomic response of a clinical, multidrug-resistant Klebsiella pneumoniae involves multiple regulatory elements and intracellular targets (2016) BMC Genomics, 17, p. 737
  • Gao, Z., Li, H., Zhang, H., Liu, X., Kang, L., Luo, X., Zhu, W., Jiang, H., PDTD: A web-accessible protein database for drug target identification (2008) BMC Bioinformatics, 9, p. 104
  • Zhu, F., Han, B., Kumar, P., Liu, X., Ma, X., Wei, X., Huang, L., Zheng, C., Update of TTD: Therapeutic Target Database (2010) Nucleic Acids Res., 38, pp. D787-D791
  • Chen, L., Oughtred, R., Berman, H.M., Westbrook, J., TargetDB: A target registration database for structural genomics projects (2004) Bioinformatics, 20, pp. 2860-2862
  • Magariñeos, M.P., Carmona, S.J., Crowther, G.J., Ralph, S.A., Roos, D.S., Shanmugam, D., Van Voorhis, W.C., Aguëro, F., TDR Targets: A chemogenomics resource for neglected diseases (2012) Nucleic Acids Res., 40, pp. D1118-D1127

Citas:

---------- APA ----------
Sosa, E.J., Burguener, G., Lanzarotti, E., Defelipe, L., Radusky, L., Pardo, A.M., Marti, M.,..., Fernández Do Porto, D. (2018) . Target-Pathogen: A structural bioinformatic approach to prioritize drug targets in pathogens. Nucleic Acids Research, 46(D1), D413-D418.
http://dx.doi.org/10.1093/nar/gkx1015
---------- CHICAGO ----------
Sosa, E.J., Burguener, G., Lanzarotti, E., Defelipe, L., Radusky, L., Pardo, A.M., et al. "Target-Pathogen: A structural bioinformatic approach to prioritize drug targets in pathogens" . Nucleic Acids Research 46, no. D1 (2018) : D413-D418.
http://dx.doi.org/10.1093/nar/gkx1015
---------- MLA ----------
Sosa, E.J., Burguener, G., Lanzarotti, E., Defelipe, L., Radusky, L., Pardo, A.M., et al. "Target-Pathogen: A structural bioinformatic approach to prioritize drug targets in pathogens" . Nucleic Acids Research, vol. 46, no. D1, 2018, pp. D413-D418.
http://dx.doi.org/10.1093/nar/gkx1015
---------- VANCOUVER ----------
Sosa, E.J., Burguener, G., Lanzarotti, E., Defelipe, L., Radusky, L., Pardo, A.M., et al. Target-Pathogen: A structural bioinformatic approach to prioritize drug targets in pathogens. Nucleic Acids Res. 2018;46(D1):D413-D418.
http://dx.doi.org/10.1093/nar/gkx1015