Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aim: Trimerotropis pallidipennis represents a species complex of band-winged grasshopper distributed over North and South America. Previous studies indicated a North American origin of the species and suggested that colonization of South America occurred during the Pleistocene after the closure of the Isthmus of Panama. Here we use a phylogeographical approach in order to test different biogeographical scenarios and determine how many distinct units exist within the species complex. Location: North and South America with specific emphasis on the Andes mountains of South America. Methods: We sequenced two mitochondrial and two nuclear genes for multiple specimens belonging to each taxonomic unit. Using the concatenated dataset and a coalescent-based approach we estimated the phylogeny of the complex. In order to distinguish the different biogeographical and species delimitation hypotheses we constrained our dataset to different taxon sets and ran Bayesian analyses in *beast. Posterior probabilities and DensiTree plots allowed us to determine the best hypotheses. We used a molecular clock approach to correlate geological events with observed phylogenetic splits. Results: All analyses indicate the existence of at least three distinct genetic lineages: Trimerotropis pallidipennis from North America, Trimerotropis ochraceipennis from Chile and an undescribed Trimerotropis species from Argentina. The split between North and South American forms took place about 1.3 Ma, long after the Isthmus of Panama had been completed. Biogeographical analyses suggest a first dispersal event from North to South America. Subsequent dispersion and vicariance probably led to the differentiation of the endemics now found in Chile and Argentina. Main conclusions: We demonstrate the existence of three distinct genetic lineages in the Trimerotropis pallidipennis species complex. These lineages are also chromosomally differentiated as previous studies have indicated. Dispersion of T. pallidipennis from North to South America probably occurred during the early Pleistocene, when climatic conditions were more suitable. Subsequent diversification in South America was the result of range expansion and vicariance, possibly in response to later Pleistocene glaciations of the Andes. © 2012 Blackwell Publishing Ltd.

Registro:

Documento: Artículo
Título:Biogeography of Trimerotropis pallidipennis (Acrididae: Oedipodinae): Deep divergence across the Americas
Autor:Husemann, M.; Guzman, N.V.; Danley, P.D.; Cigliano, M.M.; Confalonieri, V.A.
Filiación:Biology Department, Baylor University, Waco, TX, United States
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
División Entomología, Museo de La Plata, La Plata, Argentina
Palabras clave:Andes; Band-winged grasshoppers; Bayesian species delimitation; Panama Isthmus; Phylogeography; Pleistocene glaciations; Bayesian analysis; colonization; dispersal; dispersion; divergence; endemic species; endemism; glaciation; grasshopper; morphology; paleoclimate; phylogeny; phylogeography; Pleistocene; range expansion; species complex; taxonomy; vicariance; zoogeography; Isthmus of Panama; North America; Panama [Central America]; South America; Acrididae; Caelifera; Oedipodinae; Trimerotropis; Trimerotropis pallidipennis
Año:2013
Volumen:40
Número:2
Página de inicio:261
Página de fin:273
DOI: http://dx.doi.org/10.1111/jbi.12007
Título revista:Journal of Biogeography
Título revista abreviado:J. Biogeogr.
ISSN:03050270
CODEN:JBIOD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03050270_v40_n2_p261_Husemann

Referencias:

  • Akaike, H., Information theory and an extension of the maximum likelihood principle (1973) Second International Symposium on Information Theory, pp. 267-281. , ed. by B.N. Petrov and F. Csaki). Akademia Kiado, Budapest
  • Amédégnato, C., Carbonell, C.S., (2001), http://orthoptera.speciesfile.org, Unpublished list. Cited in Orthoptera species file online. Version 2.0/4.1. [14-06-2012]. Available at; Bouckaert, R.R., DensiTree: making sense of sets of phylogenetic trees (2010) Bioinformatics, 26, pp. 1372-1373
  • Brower, A.V.Z., Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution (1994) Proceedings of the National Academy of Sciences USA, 91, pp. 6491-6495
  • Carbonell, C.S., Origin, evolution, and distribution of the Neotropical acridomorph fauna (Orthoptera): a preliminary hypothesis (1977) Revista de la Sociedad Entomológica Argentina, 36, pp. 153-175
  • Carbonell, C.S., Cigliano, M.M., Lange, C.E., (2006) Especies de acridomorfos (Orthoptera) de Argentina y Uruguay, , CD ROM. Publications on Orthopteran Diversity. The Orthopterists' Society at Museo de La Plata, Argentina
  • Cigliano, M.M., Amédégnato, C., The high-Andean Jivarus Giglio-Tos (Orthoptera, Acridoidea, Melanoplinae): systematics, phylogenetic and biogeographic considerations (2010) Systematic Entomology, 35, pp. 692-721
  • Cigliano, M.M., Pocco, M.E., Lange, C.E., Grasshoppers of the Andes: new Melanoplinae and Gomphocerinae taxa (Orthoptera: Acridoidea: Acrididae) from Huascarán National Park and Callejón de Huaylas, Ancash, Perú (2011) Zoosystema, 33, pp. 522-544
  • Cigliano, M.M., Pocco, M.E., Lange, C.E., Acridoideos (Orthoptera) de importancia agroeconómica (2012) Biodiversidad de artrópodos Argentinos, 3, pp. 1-26. , (ed. by S. Roig-Juñent, J.J. Morrone and L. Claps). Sociedad Entomológica Argentina, Tucumán
  • Coates, A.G., Obando, J.A., The geologic evolution of the Central America isthmus (1996) Evolution and environment in tropical America, pp. 21-56. , ed. by J.B.C. Jackson, A.F. Budd and A.G. Coates). University of Chicago Press, Chicago, IL
  • Coates, A.G., McNeill, D.F., Aubry, M.P., Berggren, W.A., Collins, L.S., An introduction to the geology of the Bocas del Toro archipelago, Panama (2005) Caribbean Journal of Science, 41, pp. 374-391
  • Colombo, P.C., Confalonieri, V.A., An adaptive pattern of inversion polymorphisms in Trimerotropis pallidipennis. Correlation with environmental variables: an overall view (1996) Hereditas, 125, pp. 284-290
  • Confalonieri, V.A., Effects of centric shift polymorphisms on chiasma conditions in Trimerotropis pallidipennis (Oedipodinae: Acrididae) (1988) Genetica, 76, pp. 171-179
  • Confalonieri, V.A., Inversion polymorphisms and natural selection in Trimerotropis pallidipennis (Orthoptera). I. Correlations with geographical variables (1994) Hereditas, 121, pp. 79-86
  • Confalonieri, V.A., Colombo, P.C., Inversion polymorphisms in Trimerotropis pallidipennis (Orthoptera): clinal variation along an altitudinal gradient (1989) Heredity, 62, pp. 107-112
  • Confalonieri, V.A., Sequeira, A., Todaro, L., Vilardi, J.C., Mitochondrial DNA and phylogeography of the grasshopper Trimerotropis pallidipennis in relation with clinal distribution of chromosome polymorphisms (1998) Heredity, 81, pp. 444-452
  • DeAngelis, M.M., Wang, D.G., Hawkins, T.L., Solid-phase reversible immobilization for the isolation of PCR products (1995) Nucleic Acids Research, 23, pp. 4742-4743
  • Drummond, A.J., Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evolutionary Biology, 7, p. 214
  • Drummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A., Relaxed phylogenetics and dating with confidence (2006) PLoS Biology, 4, pp. e88
  • Eades, D.C., Otte, D., Cigliano, M.M., Braun, H., (2011) Orthoptera species file online, , http://orthoptera.speciesfile.org, Version 2.0/4.0. Available at
  • Ehlers, J., Gibbard, P.L., Glaciation: overview (2007) Encyclopedia of Quaternary science, pp. 1023-1031. , ed. by S.A. Elias). Elsevier, Amsterdam
  • Felsenstein, J., Phylogenies from molecular sequences: inference and reliability (1988) Annual Review of Genetics, 22, pp. 521-565
  • Felsenstein, J., (1993) PHYLIP (phylogeny inference package) version 3.5c, , Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, WA
  • Goloboff, P., Farris, J., Nixon, K., (2003) TNT (v.1.1): tree analysis using new technology, , http://www.zmuc.dk/public/phylogeny/tnt, Program and documentation available at
  • Gregory-Wodzicki, K.M., Uplift history of the central and northern Andes: a review (2000) Geological Society of America Bulletin, 112, pp. 1091-1105
  • Guzman, N.V., Confalonieri, V.A., The evolution of South American populations of Trimerotropis pallidipennis (Oedipodinae: Acrididae) revisited: dispersion routes and origin of chromosomal inversion clines (2010) Journal of Orthoptera Research, 19, pp. 253-260
  • Heled, J., Drummond, A.J., Bayesian inference of species trees from multilocus data (2009) Molecular Biology and Evolution, 27, pp. 570-580
  • Hewitt, G., The genetic legacy of the Quaternary ice ages (2000) Nature, 405, pp. 907-913
  • Hines, H.M., Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus) (2008) Systematic Biology, 57, pp. 58-75
  • Hochkirch, A., Husemann, M., A review of the Canarian Sphingonotini with description of a new species from Fuerteventura (Orthoptera: Acrididae: Oedipodinae) (2008) Zoological Studies, 47, pp. 495-506
  • Hoorn, C., Guerrero, J., Sarmiento, G.A., Lorente, M.A., Andean tectonics as a cause for changing drainage patterns in Miocene northern South America (1995) Geology, 23, pp. 237-240
  • Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogeny (2001) Bioinformatics, 17, pp. 754-755
  • Husemann, M., Namkung, S., Habel, J.C., Danley, P.D., Hochkirch, A., Phylogenetic analyses of band-winged grasshoppers (Orthoptera, Acrididae, Oedipodinae) reveal convergence of wing morphology (2012) Zoologica Scripta, 41, pp. 515-526
  • Kodandaramaiah, U., Vagility: the neglected component in historical biogeography (2009) Evolutionary Biology, 36, pp. 327-335
  • Lafuente, N., Esponda, P., Solervigens, J., Citotaxonomia en Ortopteros Chilenos (1968) Revista Chilena de Entomología, 6, pp. 91-99
  • MacPhee, R.D.E., Iturralde-Vinent, M.A., Origin of the Greater Antillean land mammal fauna, 1: New Tertiary fossils from Cuba and Puerto Rico (1995) American Museum Novitates, 3141, pp. 1-31
  • Marshall, L.G., Webb, S.D., Sepkoski Jr., J.J., Raup, D.M., Mammalian evolution and the Great American Interchange (1982) Science, 215, pp. 1351-1357
  • Otte, D., (1984) The North American grasshoppers. Vol. II, Acrididae: Oedipodinae, , Harvard University Press, Cambridge, MA
  • Otte, D., (1995) Orthoptera species file, Vol. 4, Grasshoppers (Acridomorpha), , Orthopterists' Society and Academy of Natural Sciences of Philadelphia, PA
  • Posada, D., jModelTest: phylogenetic model averaging (2008) Molecular Biology and Evolution, 25, pp. 1253-1256
  • Rabassa, J., Coronato, A., Martínez, O., Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review (2011) Biological Journal of the Linnean Society, 103, pp. 316-335
  • Rambaut, A., (2011) FigTree, version 1.3.1, , http://tree.bio.ed.ac.uk/software/figtree, Available at
  • Rambaut, A., Drummond, A.J., (2007) Tracer, version 1.4, , http://beast.bio.ed.ac.uk/Tracer, Available at
  • Ree, R.H., Smith, S.A., Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis (2008) Systematic Biology, 57, pp. 4-14
  • Rehn, J.A.G., The South American species of the Oedipodine genus Trimerotropis (Orthoptera: Acrididae) (1939) Transactions of the American Entomological Society, 65, pp. 395-414
  • Ronquist, F., Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography (1997) Systematic Biology, 46, pp. 195-203
  • Rull, V., Speciation timing and neotropical biodiversity: the Tertiary-Quaternary debate in the light of molecular phylogenetic evidence (2008) Molecular Ecology, 17, pp. 2722-2729
  • Sanmartín, I., Ronquist, F., Southern Hemisphere biogeography inferred by event-based models: plant versus animal patterns (2004) Systematic Biology, 53, pp. 216-243
  • Sanmartín, I., Enghoff, H., Ronquist, F., Patterns of animal dispersal, vicariance and diversification in the Holarctic (2001) Biological Journal of the Linnean Society, 73, pp. 345-390
  • White, M.J.D., A cytological survey of wild populations of Trimerotropis and Circotettix. I. The chromosomes of twelve species (1949) Genetics, 34, pp. 537-563
  • White, M.J.D., Cytogenetics of orthopteroid insects (1951) Advances in Genetics, 4, pp. 267-330
  • White, M.J.D., (1973) Animal cytology and evolution, , 3rd edn. Cambridge University Press, Cambridge, UK
  • Yu, J.N., Azuma, N., Yoon, M., Brykov, V., Urawa, S., Nagata, M., Jin, D.H., Abe, S., Population genetic structure and phylogeography of masu salmon (Oncorhynchus masou masou) inferred from mitochondrial and microsatellite DNA analyses (2010) Zoological Science, 27, pp. 375-385

Citas:

---------- APA ----------
Husemann, M., Guzman, N.V., Danley, P.D., Cigliano, M.M. & Confalonieri, V.A. (2013) . Biogeography of Trimerotropis pallidipennis (Acrididae: Oedipodinae): Deep divergence across the Americas. Journal of Biogeography, 40(2), 261-273.
http://dx.doi.org/10.1111/jbi.12007
---------- CHICAGO ----------
Husemann, M., Guzman, N.V., Danley, P.D., Cigliano, M.M., Confalonieri, V.A. "Biogeography of Trimerotropis pallidipennis (Acrididae: Oedipodinae): Deep divergence across the Americas" . Journal of Biogeography 40, no. 2 (2013) : 261-273.
http://dx.doi.org/10.1111/jbi.12007
---------- MLA ----------
Husemann, M., Guzman, N.V., Danley, P.D., Cigliano, M.M., Confalonieri, V.A. "Biogeography of Trimerotropis pallidipennis (Acrididae: Oedipodinae): Deep divergence across the Americas" . Journal of Biogeography, vol. 40, no. 2, 2013, pp. 261-273.
http://dx.doi.org/10.1111/jbi.12007
---------- VANCOUVER ----------
Husemann, M., Guzman, N.V., Danley, P.D., Cigliano, M.M., Confalonieri, V.A. Biogeography of Trimerotropis pallidipennis (Acrididae: Oedipodinae): Deep divergence across the Americas. J. Biogeogr. 2013;40(2):261-273.
http://dx.doi.org/10.1111/jbi.12007