Artículo

Molter, U.; Yavicoli, A. "Small sets containing any pattern" (2018) Mathematical Proceedings of the Cambridge Philosophical Society
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Given any dimension function h, we construct a perfect set E of zero h-Hausdorff measure, that contains any finite polynomial pattern.This is achieved as a special case of a more general construction in which we have a family of functions that satisfy certain conditions and we construct a perfect set E in, of h-Hausdorff measure zero, such that for any finite set {f1,.,fn} †, E satisfies that.We also obtain an analogous result for the images of functions. Additionally we prove some related results for countable (not necessarily finite) intersections, obtaining, instead of a perfect set, an set without isolated points. © 2018 Cambridge Philosophical Society.

Registro:

Documento: Artículo
Título:Small sets containing any pattern
Autor:Molter, U.; Yavicoli, A.
Filiación:Departamento de Matemática and IMAS/UBA-CONICET, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
Año:2018
DOI: http://dx.doi.org/10.1017/S0305004118000567
Título revista:Mathematical Proceedings of the Cambridge Philosophical Society
Título revista abreviado:Math. Proc. Camb. Philos. Soc.
ISSN:03050041
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03050041_v_n_p_Molter

Citas:

---------- APA ----------
Molter, U. & Yavicoli, A. (2018) . Small sets containing any pattern. Mathematical Proceedings of the Cambridge Philosophical Society.
http://dx.doi.org/10.1017/S0305004118000567
---------- CHICAGO ----------
Molter, U., Yavicoli, A. "Small sets containing any pattern" . Mathematical Proceedings of the Cambridge Philosophical Society (2018).
http://dx.doi.org/10.1017/S0305004118000567
---------- MLA ----------
Molter, U., Yavicoli, A. "Small sets containing any pattern" . Mathematical Proceedings of the Cambridge Philosophical Society, 2018.
http://dx.doi.org/10.1017/S0305004118000567
---------- VANCOUVER ----------
Molter, U., Yavicoli, A. Small sets containing any pattern. Math. Proc. Camb. Philos. Soc. 2018.
http://dx.doi.org/10.1017/S0305004118000567