Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the propulsion of superparamagnetic particles dispersed in a viscous fluid upon the application of an elliptically polarized rotating magnetic field. Reducing the fluid surface tension the particles sediment due to density mismatch and rotate close to the low recipient confining plate. We study the net translational motion arising from the hydrodynamic coupling with the plate and find that, above a cross over magnetic field, magnetically assembled doublets move faster than single particles. In turn, particles are driven in complex highly controlled trajectories by rotating the plane containing the magnetic field vector. The effect of the field rotation on long self assembled chains is discussed and the alternating breakup and reformation of the particle chains is described. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Magnetic particles guided by ellipsoidal AC magnetic fields in a shallow viscous fluid: Controlling trajectories and chain lengths
Autor:Jorge, G.A.; Llera, M.; Bekeris, V.
Filiación:Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
Palabras clave:Chains; Magnetic fields; Magnetism; Viscosity; Viscous flow; AC magnetic fields; Hydrodynamic coupling; Magnetic field vectors; Magnetic particle; Rotating magnetic fields; Single particle; Superparamagnetic particles; Translational motions; Magnetic bubbles
Año:2017
Volumen:444
Página de inicio:467
Página de fin:471
DOI: http://dx.doi.org/10.1016/j.jmmm.2017.08.057
Título revista:Journal of Magnetism and Magnetic Materials
Título revista abreviado:J Magn Magn Mater
ISSN:03048853
CODEN:JMMMD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03048853_v444_n_p467_Jorge

Referencias:

  • Avron, J.E., Gat, O., Kenneth, O., Optimal swimming at low reynolds numbers (2004) Phys. Rev. Lett., 93, p. 186001
  • Golestanian, R., Ajdari, A., Mechanical response of a small swimmer driven by conformational transitions (2008) Phys. Rev. Lett., 100, p. 038101
  • Najafi, A., Golestanian, R., Simple swimmer at low reynolds number: three linked spheres (2004) Phys. Rev. E, 69, p. 062901
  • Pooley, C.M., Balazs, A.C., Producing swimmers by coupling reaction-diffusion equations to a chemically responsive material (2007) Phys. Rev. E, 76, p. 016308
  • Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J., Microscopic artificial swimmers (2005) Nature, 437 (7060), pp. 862-865
  • Ogrin, F.Y., Petrov, P.G., Winlove, C.P., Ferromagnetic microswimmers (2008) Phys. Rev. Lett., 100, p. 218102
  • Rapaport, D.C., Microscale swimming: the molecular dynamics approach (2007) Phys. Rev. Lett., 99, p. 238101
  • Avron, J.E., Raz, O., A geometric theory of swimming: purcell's swimmer and its symmetrized cousin (2008) N. J. Phys., 10 (6), p. 063016
  • Leshansky, A., Kenneth, O., Surface tank treading: propulsion of purcells toroidal swimmer (2008) Phys. Fluids, 20 (6), p. 063104
  • Raz, O., Leshansky, A., Efficiency of cargo towing by a microswimmer (2008) Phys. Rev. E, 77 (5), p. 055305
  • Kaiser, A., Snezhko, A., Aranson, I.S., Flocking ferromagnetic colloids (2017) Sci. Adv., 3 (2), p. e1601469
  • Driscoll, M., Delmotte, B., Youssef, M., Sacanna, S., Donev, A., Chaikin, P., Unstable fronts and motile structures formed by microrollers (2017) Nat. Phys., 13, pp. 375-379
  • Prozorov, T., Bazylinski, D.A., Mallapragada, S.K., Prozorov, R., Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review (2013) Mater. Sci. Eng.: R, 74 (5), pp. 133-172
  • Sudo, S., Segawa, S., Honda, T., Magnetic swimming mechanism in a viscous liquid (2006) J. Intelligent Mater. Syst. Struct., 17 (8-9), pp. 729-736
  • Guo, S., Pan, Q., Khamesee, M.B., Development of a novel type of microrobot for biomedical application (2008) Microsyst. Technol., 14 (3), pp. 307-314
  • Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J., Microrobots for minimally invasive medicine (2010) Ann. Rev. Biomed. Eng., 12, pp. 55-85
  • Chang, S.T., Paunov, V.N., Petsev, D.N., Velev, O.D., Remotely powered self-propelling particles and micropumps based on miniature diodes (2007) Nat. Mater., 6 (3), pp. 235-240
  • Edd, J., Payen, S., Rubinsky, B., Stoller, M., Sitti, M., (2003), Proceedings of ieee/rsj international conference on intelligent robots and systems; Kim, S., Qiu, F., Kim, S., Ghanbari, A., Moon, C., Zhang, L., Nelson, B.J., Choi, H., Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation (2013) Adv. Mater., 25 (41), pp. 5863-5868
  • Snezhko, A., Aranson, I., Kwok, W.-K., Dynamic self-assembly of magnetic particles on the fluid interface: surface-wave-mediated effective magnetic exchange (2006) Phys. Rev. E, 73 (4), p. 041306
  • Snezhko, A., Aranson, I., Kwok, W.-K., Surface wave assisted self-assembly of multidomain magnetic structures (2006) Phys. Rev. Lett., 96 (7), p. 078701
  • Happel, J., Brenner, H., (2012), 1. , Low Reynolds number hydrodynamics: with special applications to particulate media; Purcell, E.M., Life at low reynolds number (1977) Am. J. Phys., 45 (1), pp. 3-11
  • Goldman, A.J., Cox, R.G., Brenner, H., Slow viscous motion of a sphere parallel to a plane wall–i motion through a quiescent fluid (1967) Chem. Eng. Sci., 22 (4), pp. 637-651
  • Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W., The imagej ecosystem: an open platform for biomedical image analysis (2015) Mol. Reprod. Develop., 82 (7-8), pp. 518-529
  • http://cismm.web.unc.edu/, Cuda video spot tracker. < >; http://physlets.org/tracker/, Tracker video analysis tool. < >; Romodina, M.N., Lyubin, E.V., Fedyanin, A.A., Sci. Rep., , Detection of brownian torque in a magnetically-driven rotating microsystem, 6
  • Liu, Q., Prosperetti, A., Wall effects on a rotating sphere (2010) J. Fluid Mech., 657, pp. 1-21
  • Tierno, P., Güell, O., Sagués, F., Golestanian, R., Pagonabarraga, I., Controlled propulsion in viscous fluids of magnetically actuated colloidal doublets (2010) Phys. Rev. E, 81 (1), p. 011402
  • Tierno, P., Golestanian, R., Pagonabarraga, I., Sagués, F., Controlled swimming in confined fluids of magnetically actuated colloidal rotors (2008) Phys. Rev. Lett., 101 (21), p. 218304
  • Petousis, I., Homburg, E., Derks, R., Dietzel, A., Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields (2007) Lab. Chip, 7 (12), pp. 1746-1751
  • Martinez-Pedrero, F., Ortiz-Ambriz, A., Pagonabarraga, I., Tierno, P., Colloidal microworms propelling via a cooperative hydrodynamic conveyor belt (2015) Phys. Rev. Lett., 115 (13), p. 138301
  • Llera, M., Codnia, J., Jorge, G.A., Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields (2015) J. Magn. Magn. Mater., 384, pp. 93-100
  • Melle, S., Fuller, G.G., Rubio, M.A., Structure and dynamics of magnetorheological fluids in rotating magnetic fields (2000) Phys. Rev. E, 61 (4), p. 4111
  • Gao, Y., Hulsen, M., Kang, T., den Toonder, J., Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid (2012) Phys. Rev. E, 86 (4), p. 041503
  • Biswal, S.L., Gast, A.P., Rotational dynamics of semiflexible paramagnetic particle chains (2004) Phys. Rev. E, 69 (4), p. 041406

Citas:

---------- APA ----------
Jorge, G.A., Llera, M. & Bekeris, V. (2017) . Magnetic particles guided by ellipsoidal AC magnetic fields in a shallow viscous fluid: Controlling trajectories and chain lengths. Journal of Magnetism and Magnetic Materials, 444, 467-471.
http://dx.doi.org/10.1016/j.jmmm.2017.08.057
---------- CHICAGO ----------
Jorge, G.A., Llera, M., Bekeris, V. "Magnetic particles guided by ellipsoidal AC magnetic fields in a shallow viscous fluid: Controlling trajectories and chain lengths" . Journal of Magnetism and Magnetic Materials 444 (2017) : 467-471.
http://dx.doi.org/10.1016/j.jmmm.2017.08.057
---------- MLA ----------
Jorge, G.A., Llera, M., Bekeris, V. "Magnetic particles guided by ellipsoidal AC magnetic fields in a shallow viscous fluid: Controlling trajectories and chain lengths" . Journal of Magnetism and Magnetic Materials, vol. 444, 2017, pp. 467-471.
http://dx.doi.org/10.1016/j.jmmm.2017.08.057
---------- VANCOUVER ----------
Jorge, G.A., Llera, M., Bekeris, V. Magnetic particles guided by ellipsoidal AC magnetic fields in a shallow viscous fluid: Controlling trajectories and chain lengths. J Magn Magn Mater. 2017;444:467-471.
http://dx.doi.org/10.1016/j.jmmm.2017.08.057