Artículo

Bustamante, J.P.; Bonamore, A.; Nadra, A.D.; Sciamanna, N.; Boffi, A.; Estrin, D.A.; Boechi, L. "Molecular basis of thermal stability in truncated (2/2) hemoglobins" (2014) Biochimica et Biophysica Acta - General Subjects. 1840(7):2281-2288
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background Understanding the molecular mechanism through which proteins are functional at extreme high and low temperatures is one of the key issues in structural biology. To investigate this phenomenon, we have focused on two instructive truncated hemoglobins from Thermobifida fusca (Tf-trHbO) and Mycobacterium tuberculosis (Mt-trHbO); although the two proteins are structurally nearly identical, only the former is stable at high temperatures. Methods We used molecular dynamics simulations at different temperatures as well as thermal melting profile measurements of both wild type proteins and two mutants designed to interchange the amino acid residue, either Pro or Gly, at E3 position. Results The results show that the presence of a Pro at the E3 position is able to increase (by 8°) or decrease (by 4°) the melting temperature of Mt-trHbO and Tf-trHbO, respectively. We observed that the ProE3 alters the structure of the CD loop, making it more flexible. Conclusions This gain in flexibility allows the protein to concentrate its fluctuations in this single loop and avoid unfolding. The alternate conformations of the CD loop also favor the formation of more salt-bridge interactions, together augmenting the protein's thermostability. General significance These results indicate a clear structural and dynamical role of a key residue for thermal stability in truncated hemoglobins. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:Molecular basis of thermal stability in truncated (2/2) hemoglobins
Autor:Bustamante, J.P.; Bonamore, A.; Nadra, A.D.; Sciamanna, N.; Boffi, A.; Estrin, D.A.; Boechi, L.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Biochemical Sciences, Instituto Pasteur, University of Rome la Sapienza, Italy
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Folding; Molecular dynamics; Mycobacterium tuberculosis; Thermobifida fusca; Thermostability; Truncated hemoglobin; glycine; proline; truncated hemoglobin; amino acid substitution; article; computer simulation; controlled study; hemoglobin analysis; melting point; molecular dynamics; molecular interaction; Mycobacterium tuberculosis; nonhuman; priority journal; protein conformation; protein expression; protein stability; protein structure; protein unfolding; Thermobifida fusca; thermostability; wild type; Folding; Molecular dynamics; Mycobacterium tuberculosis; Thermobifida fusca; Thermostability; Truncated hemoglobin; Actinomycetales; Hot Temperature; Humans; Models, Molecular; Molecular Dynamics Simulation; Mycobacterium tuberculosis; Protein Stability; Truncated Hemoglobins
Año:2014
Volumen:1840
Número:7
Página de inicio:2281
Página de fin:2288
DOI: http://dx.doi.org/10.1016/j.bbagen.2014.03.018
Título revista:Biochimica et Biophysica Acta - General Subjects
Título revista abreviado:Biochim. Biophys. Acta Gen. Subj.
ISSN:03044165
CODEN:BBGSB
CAS:glycine, 56-40-6, 6000-43-7, 6000-44-8; proline, 147-85-3, 7005-20-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03044165_v1840_n7_p2281_Bustamante

Referencias:

  • Hicks, P.M., Adams, M.W.W., Kelly, R.M., Enzymes, extremely thermostable (1999) Encycl. Bioprocess Technol. Ferment. Biocatal. Biosep, pp. 987-1004. , M.C. Flickinger, S.W. Drew, John Wiley Sons, Inc. New York
  • Day, M.W., Hsu, B.T., Joshua-Tor, L., Park, J.-B., Zhou, Z.H., Adams, M.W.W., Rees, D.C., X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus (1992) Protein Sci., 1 (11), pp. 1494-1507
  • Auerbach, G., Ostendorp, R., Prade, L., Korndörfer, I., Dams, T., Huber, R., Jaenicke, R., Lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: The crystal structure at 2.1 Å resolution reveals strategies for intrinsic protein stabilization (1998) Structure, 6 (6), pp. 769-781
  • Vieille, C., Hess, J., Kelly, R., Zeikus, J., XylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana (1995) Appl. Environ. Microbiol., 61 (5), pp. 1867-1875
  • Chen, L., Roberts, M.F., Characterization of a tetrameric inositol monophosphatase from the hyperthermophilic bacterium Thermotoga maritima (1999) Appl. Environ. Microbiol., 65 (10), pp. 4559-4567
  • Jaenicke, R., Protein stability and molecular adaptation to extreme conditions (1991) Eur. J. Biochem., 202 (3), pp. 715-728
  • Adams, M.W.W., Kelly, R.M., Enzymes from microorganisms in extreme environments (1995) Chem. Eng. News, 73 (51), pp. 32-42
  • Jaenicke, R., Böhm, G., The stability of proteins in extreme environments (1998) Curr. Opin. Struct. Biol., 8 (6), pp. 738-748
  • Lazaridis, T., Lee, I., Karplus, M., Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin (1997) Protein Sci., 6 (12), pp. 2589-2605
  • Manco, G., Giosuè, E., D'Auria, S., Herman, P., Carrea, G., Rossi, M., Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus (2000) Arch. Biochem. Biophys., 373 (1), pp. 182-192
  • Gershenson, A., Schauerte, J.A., Giver, L., Arnold, F.H., Tryptophan phosphorescence study of enzyme flexibility and unfolding in laboratory-evolved thermostable esterases (2000) Biochemistry, 39 (16), pp. 4658-4665
  • Závodszky, P., Kardos, J., Svingor, Petsko, G.A., Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins (1998) Proc. Natl. Acad. Sci. U. S. A., 95 (13), pp. 7406-7411
  • Mamonova, T., Glyakina, A., Galzitskaya, O., Kurnikova, M., Stability and rigidity/flexibility - Two sides of the same coin? (2013) Biochim. Biophys. Acta, 1834 (5), pp. 854-866
  • Hernández, G., Jenney, Jr.F.E., Adams, M.W.W., Lemaster, D.M., Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature (2000) Proc. Natl. Acad. Sci. U. S. A., 97 (7), pp. 3166-3170
  • Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G., Funnels, pathways, and the energy landscape of protein folding: A synthesis (1995) Proteins Struct. Funct. Genet., 21 (3), pp. 167-195
  • Vogt, G., Woell, S., Argos, P., Protein thermal stability, hydrogen bonds, and ion pairs (1997) J. Mol. Biol., 269 (4), pp. 631-643
  • Matthews, B.W., Nicholson, H., Becktel, W.J., Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding (1987) Proc. Natl. Acad. Sci. U. S. A., 84 (19), pp. 6663-6667
  • Bohm, G., Jaenicke, R., Relevance of sequence statistics for the properties of extremophilic proteins (1994) Int. J. Pept. Protein Res., 43 (1), pp. 97-106
  • Sterpone, F., Melchionna, S., Thermophilic proteins: Insight and perspective from in silico experiments (2012) Chem. Soc. Rev., 41, pp. 1665-1676
  • Bleicher, L., Prates, E.T., Gomes, T.C.F., Silveira, R.L., Nascimento, A.S., Rojas, A.L., Golubev, A., Polikarpov, I., Molecular basis of the thermostability and thermophilicity of laminarinases: X-ray structure of the hyperthermostable laminarinase from rhodothermus marinus and molecular dynamics simulations (2011) J. Phys. Chem. B, 115 (24), pp. 7940-7949
  • Bonamore, A., Ilari, A., Giangiacomo, L., Bellelli, A., Morea, V., Boffi, A., A novel thermostable hemoglobin from the Actinobacterium Thermobifida fusca (2005) FEBS J., 272 (16), pp. 4189-4201
  • Milani, M., Savard, P.-Y., Ouellet, H., Ascenzi, P., Guertin, M., Bolognesi, M., A TyrCD1/TrpG8 hydrogen bond network and a TyrB10TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O (2003) Proc. Natl. Acad. Sci. U. S. A., 100 (10), pp. 5766-5771
  • Nicoletti, F.P., Droghetti, E., Boechi, L., Bonamore, A., Sciamanna, N., Estrin D, A., Feis, A., Smulevich, G., Fluoride as a probe for H-bonding interactions in the active site of heme proteins: The case of Thermobifida fusca hemoglobin (2011) J. Am. Chem. Soc., 133 (51), pp. 20970-20980
  • Nicoletti, F.P., Droghetti, E., Howes, B.D., Bustamante, J.P., Bonamore, A., Sciamanna, N., Estrin, D.A., Smulevich, G., H-bonding networks of the distal residues and water molecules in the active site of Thermobifida fusca hemoglobin (2013) Biochim. Biophys. Acta-Proteins Proteomics, 1834, pp. 1901-1909
  • Droghetti, E., Nicoletti, F.P., Bonamore, A., Boechi, L., Arroyo Mañez, P., Estrin D, A., Boffi, A., Feis, A., Heme pocket structural properties of a bacterial truncated hemoglobin from Thermobifida fusca (2010) Biochemistry, 49 (49), pp. 10394-10402
  • Marcelli, A., Abbruzzetti, S., Bustamante, J.P., Feis, A., Bonamore, A., Boffi, A., Gellini, C., Foggi, P., Following ligand migration pathways from picoseconds to milliseconds in type II truncated hemoglobin from Thermobifida fusca (2012) PLoS One, 7 (7), p. 39884
  • Wang, J., Cieplak, P., Kollman, P.A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? (2000) J. Comput. Chem., 21 (12), pp. 1049-1074
  • Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., Nitric oxide reactivity with globins as investigated through computer simulation (2008) Methods Enzymol., 437, pp. 477-498
  • Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen affinity in heme proteins investigated by computer simulation (2006) J. Inorg. Biochem., 100 (4), pp. 761-770
  • Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., González Lebrero, M.C., Estrin, D.A., Modeling heme proteins using atomistic simulations (2006) Phys. Chem. Chem. Phys., 8 (48), pp. 5611-5628
  • Forti, F., Boechi, L., Bikiel, D., Martí, M.A., Nardini, M., Bolognesi, M., Viappiani, C., Luque, F.J., Ligand migration in Methanosarcina acetivorans protoglobin: Effects of ligand binding and dimeric assembly (2011) J. Phys. Chem. B, 115 (46), pp. 13771-13780
  • Capece, L., Lewis-Ballester, A., Marti, M.A., Estrin, D.A., Yeh, S., Molecular basis for the substrate stereoselectivity in tryptophan dioxygenase (2011) Biochemistry, 50, pp. 10910-10918
  • Arroyo Mañez, P., Lu, C., Boechi, L., Martí, M.A., Shepherd, M., Wilson, J.L., Poole, R.K., Estrin, D.A., Role of the distal hydrogen-bonding network in regulating oxygen affinity in the truncated hemoglobin III from Campylobacter jejuni (2011) Biochemistry, 50 (19), pp. 3946-3956
  • Giordano, D., Boechi, L., Samuni, U., Vergara, A., Marti, M.A., Estrin, A., Friedman, J.M., Grassi, L., The hemoglobins of the sub-antarctic fish Cottoperca gobio, a phyletically basal species - Oxygen-binding equilibria, kinetics and molecular dynamics (2009) FEBS J., 276, pp. 2266-2277
  • Perissinotti, L.L., Marti, M.A., Doctorovich, F., Luque, F.J., Estrin, D.A., A microscopic study of the deoxyhemoglobin-catalyzed generation of nitric oxide from nitrite anion (2008) Biochemistry, 47 (37), pp. 9793-9802
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham III, T.E., Debolt, S., Ferguson, D., Kollman, P., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun., 91 (13), pp. 1-41
  • Matouschelt, A., Matthews, J.M., Johnson, C.M., Fersht, A.R., Extrapolation to water of kinetic and equilibrium data for the unfolding of barnase in urea solutions (1994) Protein Eng., 7 (9), pp. 1089-1095
  • Clarke, J., Fersht, A.R., Engineered disulfide bonds as probes of the folding pathway of barnase: Increasing the stability of proteins against the rate of denaturation (1993) Biochemistry, 32 (16), pp. 4322-4329
  • De Bakker, P.I.W., Hünenberger, P.H., McCammon, J.A., Molecular dynamics simulations of the hyperthermophilic protein Sac7d from Sulfolobus acidocaldarius: Contribution of salt bridges to thermostability (1999) J. Mol. Biol., 285 (4), pp. 1811-1830
  • Makhatadze, G.I., Loladze, V.V., Ermolenko, D.N., Chen, X., Thomas, S.T., Contribution of surface salt bridges to protein stability: Guidelines for protein engineering (2003) J. Mol. Biol., 327 (5), pp. 1135-1148
  • Capece, L., Marti, M.A., Bidon-Chanal, A., Nadra, A., Luque, F.J., Estrin, D.A., High pressure reveals structural determinants for globin hexacoordination: Neuroglobin and myoglobin cases (2009) Proteins, 75 (4), pp. 885-894
  • Giangiacomo, L., Ilari, A., Boffi, A., Morea, V., Chiancone, E., The truncated oxygen-avid hemoglobin from Bacillus subtilis: X-ray structure and ligand binding properties (2005) J. Biol. Chem., 280 (10), pp. 9192-9202
  • Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism (2005) J. Am. Chem. Soc., 127 (12), pp. 4433-4444
  • Hamdane, D., Kiger, L., Dewilde, S., Uzan, J., Burmester, T., Hankeln, T., Moens, L., Marden, M.C., Hyperthermal stability of neuroglobin and cytoglobin (2005) FEBS J., 272 (8), pp. 2076-2084

Citas:

---------- APA ----------
Bustamante, J.P., Bonamore, A., Nadra, A.D., Sciamanna, N., Boffi, A., Estrin, D.A. & Boechi, L. (2014) . Molecular basis of thermal stability in truncated (2/2) hemoglobins. Biochimica et Biophysica Acta - General Subjects, 1840(7), 2281-2288.
http://dx.doi.org/10.1016/j.bbagen.2014.03.018
---------- CHICAGO ----------
Bustamante, J.P., Bonamore, A., Nadra, A.D., Sciamanna, N., Boffi, A., Estrin, D.A., et al. "Molecular basis of thermal stability in truncated (2/2) hemoglobins" . Biochimica et Biophysica Acta - General Subjects 1840, no. 7 (2014) : 2281-2288.
http://dx.doi.org/10.1016/j.bbagen.2014.03.018
---------- MLA ----------
Bustamante, J.P., Bonamore, A., Nadra, A.D., Sciamanna, N., Boffi, A., Estrin, D.A., et al. "Molecular basis of thermal stability in truncated (2/2) hemoglobins" . Biochimica et Biophysica Acta - General Subjects, vol. 1840, no. 7, 2014, pp. 2281-2288.
http://dx.doi.org/10.1016/j.bbagen.2014.03.018
---------- VANCOUVER ----------
Bustamante, J.P., Bonamore, A., Nadra, A.D., Sciamanna, N., Boffi, A., Estrin, D.A., et al. Molecular basis of thermal stability in truncated (2/2) hemoglobins. Biochim. Biophys. Acta Gen. Subj. 2014;1840(7):2281-2288.
http://dx.doi.org/10.1016/j.bbagen.2014.03.018