Abstract:
Background During evolution, organisms with renewable tissues have developed mechanisms to prevent tumorigenesis, including cellular senescence and apoptosis. Cellular senescence is characterized by a permanent cell cycle arrest triggered by both endogenous stress and exogenous stress. The p19INK4d, a member of the family of cyclin-dependent kinase inhibitors (INK4), plays an important role on cell cycle regulation and in the cellular DNA damage response. We hypothesize that p19INK4d is a potential factor involved in the onset and/or maintenance of the senescent state. Methods Senescence was confirmed by measuring the cell cycle arrest and the senescence-associated β-galactosidase activity. Changes in p19INK4d expression and localization during senescence were determined by Western blot and immunofluorescence assays. Chromatin condensation was measured by microccocal nuclease digestion and histone salt extraction. Results The data presented here show for the first time that p19INK4d expression is up-regulated by different types of senescence. Changes in senescence-associated hallmarks were driven by modulation of p19 expression indicating a direct link between p19INK4d induction and the establishment of cellular senescence. Following a senescence stimulus, p19INK4d translocates to the nucleus and tightly associates with chromatin. Moreover, reduced levels of p19INK4d impair senescence-related global genomic heterochromatinization. Analysis of p19INK4d mRNA and protein levels in tissues from differently aged mice revealed an up-regulation of p19INK4d that correlates with age. Conclusion We propose that p19INK4d participates in the cellular mechanisms that trigger senescence by contributing to chromatin compaction. General significance This study provides novel insights into the dynamics process of cellular senescence, a central tumor suppressive mechanism. © 2014 Elsevier B.V.
Registro:
Documento: |
Artículo
|
Título: | P19INK4d is involved in the cellular senescence mechanism contributing to heterochromatin formation |
Autor: | Sonzogni, S.V.; Ogara, M.F.; Belluscio, L.M.; Castillo, D.S.; Scassa, M.E.; Cánepa, E.T. |
Filiación: | Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón II, Piso 4, 1428 Ciudad de Buenos Aires, Argentina
|
Palabras clave: | Aging; CDK inhibitor; Cellular senescence; DNA damage; Heterochromatin; beta galactosidase; cyclin dependent kinase inhibitor 2D; messenger RNA; protein p16; protein p21; aged; animal cell; animal tissue; article; BHK cell line; cell aging; cell cycle arrest; cell nucleus; cellular distribution; chromatin condensation; controlled study; DNA damage; HEK293 cell line; heterochromatin; human; human cell; male; mouse; nonhuman; priority journal; promoter region; protein expression; protein localization; signal transduction; tissue distribution; transcription initiation; upregulation; Aging; CDK inhibitor; Cellular senescence; DNA damage; Heterochromatin; Aging; Animals; beta-Galactosidase; Carcinogenesis; Cell Aging; Cell Cycle Checkpoints; Cyclin-Dependent Kinase Inhibitor p19; DNA Damage; Gene Expression Regulation; Heterochromatin; Mice |
Año: | 2014
|
Volumen: | 1840
|
Número: | 7
|
Página de inicio: | 2171
|
Página de fin: | 2183
|
DOI: |
http://dx.doi.org/10.1016/j.bbagen.2014.03.015 |
Título revista: | Biochimica et Biophysica Acta - General Subjects
|
Título revista abreviado: | Biochim. Biophys. Acta Gen. Subj.
|
ISSN: | 03044165
|
CODEN: | BBGSB
|
CAS: | beta galactosidase; protein p21, 85306-28-1
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03044165_v1840_n7_p2171_Sonzogni |
Referencias:
- Ben-Porath, I., Weinberg, R.A., The signals and pathways activating cellular senescence (2005) Int. J. Biochem. Cell Biol., 37, pp. 961-976
- Campisi, J., D'Adda Di Fagagna, F., Cellular senescence: When bad things happen to good cells (2007) Nat. Rev., 8, pp. 729-740
- Rodier, F., Campisi, J., Cellular senescence: When bad things happen to good cells (2011) Nat. Rev., 192, pp. 547-556
- Miura, T., Mattson, M.P., Rao, M.S., Cellular lifespan and senescence signaling in embryonic stem cells (2004) Aging Cell, 3, pp. 333-343
- D'Adda Di Fagagna, F., Living on a break: Cellular senescence as a DNA-damage response (2008) Nat. Rev. Cancer, 8, pp. 512-522
- D'Adda Di Fagagna, F., Teo, S.H., Jackson, S.P., Functional links between telomeres and proteins of the DNA-damage response (2004) Gene Dev., 18, pp. 1781-1799
- Shay, J.W., Wright, W.E., Senescence and immortalization: Role of telomeres and telomerase (2005) Carcinogenesis, 26, pp. 867-874
- Rodier, F., Coppe, J.P., Patil, C.K., Hoeijmakers, W.A., Munoz, D.P., Raza, S.R., Freund, A., Campisi, J., Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion (2009) Nat. Cell Biol., 11, pp. 973-979
- Sulli, G., Di Micco, R., D'Adda Di Fagagna, F., Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer (2006) Nat. Rev. Cancer, 12, pp. 709-720
- Gil, J., Peters, G., Regulation of the INK4b-ARF-INK4a tumour suppressor locus: All for one or one for all (2006) Nat. Rev., 7, pp. 667-677
- Harris, S.L., Levine, A.J., The p53 pathway: Positive and negative feedback loops (2005) Oncogene, 24, pp. 2899-2908
- Mallette, F.A., Gaumont-Leclerc, M.F., Ferbeyre, G., The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence (2007) Gene Dev., 21, pp. 43-48
- Funayama, R., Ishikawa, F., Cellular senescence and chromatin structure (2007) Chromosoma, 116, pp. 431-440
- Di Micco, R., Fumagalli, M., D'Adda Di Fagagna, F., Breaking news: High-speed race ends in arrest - How oncogenes induce senescence (2007) Trends Cell Biol., 17, pp. 529-536
- Zhang, R., Chen, W., Adams, P.D., Molecular dissection of formation of senescence-associated heterochromatin foci (2007) Mol. Cell. Biol., 27, pp. 2343-2358
- Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A.W., Hearn, S.A., Spector, D.L., Lowe, S.W., Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence (2003) Cell, 113, pp. 703-716
- Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S.K., Hartlerode, A., Sinclair, D.A., SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging (2008) Cell, 135, pp. 907-918
- Funayama, R., Saito, M., Tanobe, H., Ishikawa, F., Loss of linker histone H1 in cellular senescence (2006) J. Cell Biol., 175, pp. 869-880
- Kishi, Y., Fujii, Y., Hirabayashi, Y., Gotoh, Y., HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells (2006) Nat. Neurosci, 15, pp. 1127-1133
- Di Micco, R., Sulli, G., Dobreva, M., Liontos, M., Botrugno, O.A., Gargiulo, G., Dal Zuffo, R., D'Adda Di Fagagna, F., HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells (2006) Nat. Neurosci, 13, pp. 292-302
- Chan, H.M., Narita, M., Lowe, S.W., Livingston, D.M., The p400 E1A-associated protein is a novel component of the p53 → p21 senescence pathway (2005) Gene Dev., 19, pp. 196-201
- Narita, M., Narita, M., Krizhanovsky, V., Nunez, S., Chicas, A., Hearn, S.A., Myers, M.P., Lowe, S.W., A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation (2006) Cell, 126, pp. 503-514
- Canepa, E.T., Scassa, M.E., Ceruti, J.M., Marazita, M.C., Carcagno, A.L., Sirkin, P.F., Ogara, M.F., INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions (2007) IUBMB Life, 59, pp. 419-426
- Hirai, H., Roussel, M.F., Kato, J.Y., Ashmun, R.A., Sherr, C.J., Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6 (1995) Mol. Cell. Biol., 15, pp. 2672-2681
- Komata, T., Kanzawa, T., Takeuchi, H., Germano, I.M., Schreiber, M., Kondo, Y., Kondo, S., Antitumour effect of cyclin-dependent kinase inhibitors (p16(INK4A), p18(INK4C), p19(INK4D), p21(WAF1/CIP1) and p27(KIP1)) on malignant glioma cells (2003) Br. J. Cancer, 88, pp. 1277-1280
- Sharpless, N.E., Ramsey, M.R., Balasubramanian, P., Castrillon, D.H., Depinho, R.A., The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis (2004) Oncogene, 23, pp. 379-385
- Ceruti, J.M., Scassa, M.E., Flo, J.M., Varone, C.L., Canepa, E.T., Induction of p19INK4d in response to ultraviolet light improves DNA repair and confers resistance to apoptosis in neuroblastoma cells (2005) Oncogene, 24, pp. 4065-4080
- Scassa, M.E., Marazita, M.C., Ceruti, J.M., Carcagno, A.L., Sirkin, P.F., Gonzalez-Cid, M., Pignataro, O.P., Canepa, E.T., Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair (2007) DNA Repair (Amst), 6, pp. 626-638
- Tavera-Mendoza, L., Wang, T.T., Lallemant, B., Zhang, R., Nagai, Y., Bourdeau, V., Ramirez-Calderon, M., White, J.H., Convergence of vitamin D and retinoic acid signalling at a common hormone response element (2006) EMBO Rep., 7, pp. 180-185
- Rodier, F., Campisi, J., Four faces of cellular senescence (2011) J. Cell Biol., 192, pp. 547-556
- Pommier, Y., Topoisomerase i inhibitors: Camptothecins and beyond (2006) Nat. Rev. Cancer, 6, pp. 789-802
- Cheng, H.L., Chang, S.M., Cheng, Y.W., Liu, H.J., Chen, Y.C., Characterization of the activities of p21Cip1/Waf1 promoter-driven reporter systems during camptothecin-induced senescence-like state of BHK-21 cells (2006) Mol. Cell. Biochem., 291, pp. 29-38
- Han, Z., Wei, W., Dunaway, S., Darnowski, J.W., Calabresi, P., Sedivy, J., Hendrickson, E.A., Wyche, J.H., Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin (2002) J. Biol. Chem., 277, pp. 17154-17160
- Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., Campisi, J., Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts (2003) Nat. Cell Biol., 5, pp. 741-747
- Kuilman, T., Michaloglou, C., Mooi, W.J., Peeper, D.S., The essence of senescence (2010) Genes Dev., 24, pp. 2463-2479
- Conner, D.A., Mouse embryo fibroblast (MEF) feeder cell preparation (2001) Curr. Protoc. Mol. Biol., p. 22. , (Chapter 23:Unit 23)
- Ceruti, J.M., Scassa, M.E., Marazita, M.C., Carcagno, A.C., Sirkin, P.F., Canepa, E.T., Transcriptional upregulation of p19INK4d upon diverse genotoxic stress is critical for optimal DNA damage response (2009) Int. J. Biochem. Cell Biol., 41, pp. 1344-1353
- Varone, C.L., Canepa, E.T., Evidence that protein kinase C is involved in delta-aminolevulinate synthase expression in rat hepatocytes (1997) Arch. Biochem. Biophys., 341, pp. 259-266
- Mendez, J., Stillman, B., Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: Assembly of prereplication complexes in late mitosis (2000) Mol. Cell. Biol., 20, pp. 8602-8612
- Frenster, J.H., Allfrey, V.G., Mirsky, A.E., Repressed and active chromatin isolated from interphase lymphocytes (1963) Proc. Natl. Acad. Sci. U. S. A., 50, pp. 1026-1032
- Meshorer, E., Yellajoshula, D., George, E., Scambler, P.J., Brown, D.T., Misteli, T., Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells (2006) Dev. Cell, 10, pp. 105-116
- Levy-Wilson, B., Fortier, C., Blackhart, B.D., McCarthy, B.J., DNase I- and micrococcal nuclease-hypersensitive sites in the human apolipoprotein B gene are tissue specific (1988) Mol. Cell. Biol., 8, pp. 71-80
- Amouroux, R., Campalans, A., Epe, B., Radicella, J.P., Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions (2010) Nucleic Acids Res., 38, pp. 2878-2890
- Carcagno, A.L., Marazita, M.C., Ogara, M.F., Ceruti, J.M., Sonzogni, S.V., Scassa, M.E., Giono, L.E., Canepa, E.T., E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation (2011) PLoS One, 6, p. 21938
- Durocher, Y., Perret, S., Kamen, A., High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells (2002) Nucleic Acids Res., 30, p. 9
- Varone, C.L., Giono, L.E., Ochoa, A., Zakin, M.M., Canepa, E.T., Transcriptional regulation of 5-aminolevulinate synthase by phenobarbital and cAMP-dependent protein kinase (1999) Arch. Biochem. Biophys., 372, pp. 261-270
- Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Pereira-Smith, O., A biomarker that identifies senescent human cells in culture and in aging skin in vivo (1995) Proc. Natl. Acad. Sci. U. S. A., 92, pp. 9363-9367
- Park, K.K., Deok Ahn, J., Lee, I.K., Magae, J., Heintz, N.H., Kwak, J.Y., Lee, Y.C., Chang, Y.C., Inhibitory effects of novel E2F decoy oligodeoxynucleotides on mesangial cell proliferation by coexpression of E2F/DP (2003) Biochem. Biophys. Res. Commun., 308, pp. 689-697
- Iwasa, H., Han, J., Ishikawa, F., Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway (2003) Genes Cells, 8, pp. 131-144
- Ishikawa, F., Cellular senescence, an unpopular yet trustworthy tumor suppressor mechanism (2003) Cancer Sci., 94, pp. 944-947
- Marazita, M.C., Ogara, M.F., Sonzogni, S.V., Marti, M., Dusetti, N.J., Pignataro, O.P., Canepa, E.T., CDK2 and PKA mediated-sequential phosphorylation is critical for p19INK4d function in the DNA damage response (2012) PLoS One, 7, p. 35638
- Roussel, M.F., The INK4 family of cell cycle inhibitors in cancer (1999) Oncogene, 18, pp. 5311-5317
- Sotillo, R., Dubus, P., Martin, J., De La Cueva, E., Ortega, S., Malumbres, M., Barbacid, M., Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors (2001) EMBO J., 20, pp. 6637-6647
- Rane, S.G., Cosenza, S.C., Mettus, R.V., Reddy, E.P., Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence (2002) Mol. Cell. Biol., 22, pp. 644-656
- Quereda, V., Martinalbo, J., Dubus, P., Carnero, A., Malumbres, M., Genetic cooperation between p21Cip1 and INK4 inhibitors in cellular senescence and tumor suppression (2007) Oncogene, 26, pp. 7665-7674
- Campisi, J., Cellular senescence as a tumor-suppressor mechanism (2001) Trends Cell Biol., 11, pp. 27-S31
- Sager, R., Senescence as a mode of tumor suppression (1991) Environ. Health Perspect., 93, pp. 59-62
- Janzen, V., Forkert, R., Fleming, H.E., Saito, Y., Waring, M.T., Dombkowski, D.M., Cheng, T., Scadden, D.T., Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a (2006) Nature, 443, pp. 421-426
- Alessio, N., Bohn, W., Rauchberger, V., Rizzolio, F., Cipollaro, M., Rosemann, M., Irmler, M., Galderisi, U., Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells (2013) Cell. Mol. Life Sci., 70, pp. 1637-1651
- Tsai, W.C., Chang, H.N., Yu, T.Y., Chien, C.H., Fu, L.F., Liang, F.C., Pang, J.H., Decreased proliferation of aging tenocytes is associated with down-regulation of cellular senescence-inhibited gene and up-regulation of p27 (2011) J. Orthop. Res., 29, pp. 1598-1603
- Gao, F.H., Hu, X.H., Li, W., Liu, H., Zhang, Y.J., Guo, Z.Y., Xu, M.H., Wu, Y.L., Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc (2010) BMC Cancer, 10, p. 610
- Park, S.H., Lim, J.S., Jang, K.L., All-trans retinoic acid induces cellular senescence via upregulation of p16, p21, and p27 (2011) Cancer Lett., 310, pp. 232-239
- Thullberg, M., Bartkova, J., Khan, S., Hansen, K., Ronnstrand, L., Lukas, J., Strauss, M., Bartek, J., Distinct versus redundant properties among members of the INK4 family of cyclin-dependent kinase inhibitors (2000) FEBS Lett., 470, pp. 161-166
- Zindy, F., Van Deursen, J., Grosveld, G., Sherr, C.J., Roussel, M.F., INK4d-deficient mice are fertile despite testicular atrophy (2000) Mol. Cell. Biol., 20, pp. 372-378
- Wiedemeyer, R., Brennan, C., Heffernan, T.P., Xiao, Y., Mahoney, J., Protopopov, A., Zheng, H., Chin, L., Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development (2008) Cancer Cell, 13, pp. 355-364
- Ramsey, M.R., Krishnamurthy, J., Pei, X.H., Torrice, C., Lin, W., Carrasco, D.R., Ligon, K.L., Sharpless, N.E., Expression of p16Ink4a compensates for p18Ink4c loss in cyclin-dependent kinase 4/6-dependent tumors and tissues (2007) Cancer Res., 67, pp. 4732-4741
- Gagrica, S., Brookes, S., Anderton, E., Rowe, J., Peters, G., Contrasting behavior of the p18INK4c and p16INK4a tumor suppressors in both replicative and oncogene-induced senescence (2012) Cancer Res., 72, pp. 165-175
- Krimpenfort, P., Ijpenberg, A., Song, J.Y., Van Der Valk, M., Nawijn, M., Zevenhoven, J., Berns, A., P15Ink4b is a critical tumour suppressor in the absence of p16Ink4a (2007) Nature, 448, pp. 943-946
- Zindy, F., Quelle, D.E., Roussel, M.F., Sherr, C.J., Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging (1997) Oncogene, 15, pp. 203-211
- Matsuzaki, Y., Sakai, T., INK4 family - A promising target for 'gene-regulating chemoprevention' and 'molecular-targeting prevention' of cancer (2005) Environ. Health Prev. Med., 10, pp. 72-77
- Hitomi, T., Matsuzaki, Y., Yokota, T., Takaoka, Y., Sakai, T., P15(INK4b) in HDAC inhibitor-induced growth arrest (2003) FEBS Lett., 554, pp. 347-350
- Yokota, T., Matsuzaki, Y., Miyazawa, K., Zindy, F., Roussel, M.F., Sakai, T., Histone deacetylase inhibitors activate INK4d gene through Sp1 site in its promoter (2004) Oncogene, 23, pp. 5340-5349
- Morishita, A., Gong, J., Deguchi, A., Tani, J., Miyoshi, H., Yoshida, H., Himoto, T., Masaki, T., Frequent loss of p19INK4D expression in hepatocellular carcinoma: Relationship to tumor differentiation and patient survival (2011) Oncol. Rep., 26, pp. 1363-1368
- Acosta, J.C., Gil, J., Senescence: A new weapon for cancer therapy (2012) Trends Cell Biol., 22, pp. 211-219
- Rayess, H., Wang, M.B., Srivatsan, E.S., Cellular senescence and tumor suppressor gene p16 (2012) Int. J. Cancer, 130, pp. 1715-1725
- Wu, J., Xue, L., Weng, M., Sun, Y., Zhang, Z., Wang, W., Tong, T., Sp1 is essential for p16 expression in human diploid fibroblasts during senescence (2007) PLoS One, 2, p. 164
- Dasari, A., Bartholomew, J.N., Volonte, D., Galbiati, F., Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements (2006) Cancer Res., 66, pp. 10805-10814
- Narita, M., Nunez, S., Heard, E., Lin, A.W., Hearn, S.A., Spector, D.L., Hannon, G.J., Lowe, S.W., Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence (2003) Cell, 113, pp. 703-716
- Adams, P.D., Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging (2007) Gene, 397, pp. 84-93
- Radic, M.Z., Saghbini, M., Elton, T.S., Reeves, R., Hamkalo, B.A., Hoechst 33258, distamycin A, and high mobility group protein i (HMG-I) compete for binding to mouse satellite DNA (1992) Chromosoma, 101, pp. 602-608
- Narita, M., Krizhanovsky, V., Nunez, S., Chicas, A., Hearn, S.A., Myers, M.P., Lowe, S.W., A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation (2006) Cell, 126, pp. 503-514
- Becker, T.M., Haferkamp, S., Dijkstra, M.K., Scurr, L.L., Frausto, M., Diefenbach, E., Scolyer, R.A., Rizos, H., The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a (2009) Mol. Cancer, 8, p. 4
- Bandyopadhyay, D., Curry, J.L., Lin, Q., Richards, H.W., Chen, D., Hornsby, P.J., Timchenko, N.A., Medrano, E.E., Dynamic assembly of chromatin complexes during cellular senescence: Implications for the growth arrest of human melanocytic nevi (2007) Aging Cell, 6, pp. 577-591
- Wajapeyee, N., Serra, R.W., Zhu, X., Mahalingam, M., Green, M.R., Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7 (2008) Cell, 132, pp. 363-374
- Drost, J., Mantovani, F., Tocco, F., Elkon, R., Comel, A., Holstege, H., Kerkhoven, R., Del Sal, G., BRD7 is a candidate tumour suppressor gene required for p53 function (2010) Nat. Cell Biol., 12, pp. 380-389
Citas:
---------- APA ----------
Sonzogni, S.V., Ogara, M.F., Belluscio, L.M., Castillo, D.S., Scassa, M.E. & Cánepa, E.T.
(2014)
. P19INK4d is involved in the cellular senescence mechanism contributing to heterochromatin formation. Biochimica et Biophysica Acta - General Subjects, 1840(7), 2171-2183.
http://dx.doi.org/10.1016/j.bbagen.2014.03.015---------- CHICAGO ----------
Sonzogni, S.V., Ogara, M.F., Belluscio, L.M., Castillo, D.S., Scassa, M.E., Cánepa, E.T.
"P19INK4d is involved in the cellular senescence mechanism contributing to heterochromatin formation"
. Biochimica et Biophysica Acta - General Subjects 1840, no. 7
(2014) : 2171-2183.
http://dx.doi.org/10.1016/j.bbagen.2014.03.015---------- MLA ----------
Sonzogni, S.V., Ogara, M.F., Belluscio, L.M., Castillo, D.S., Scassa, M.E., Cánepa, E.T.
"P19INK4d is involved in the cellular senescence mechanism contributing to heterochromatin formation"
. Biochimica et Biophysica Acta - General Subjects, vol. 1840, no. 7, 2014, pp. 2171-2183.
http://dx.doi.org/10.1016/j.bbagen.2014.03.015---------- VANCOUVER ----------
Sonzogni, S.V., Ogara, M.F., Belluscio, L.M., Castillo, D.S., Scassa, M.E., Cánepa, E.T. P19INK4d is involved in the cellular senescence mechanism contributing to heterochromatin formation. Biochim. Biophys. Acta Gen. Subj. 2014;1840(7):2171-2183.
http://dx.doi.org/10.1016/j.bbagen.2014.03.015