Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Autonomous glycosylphosphatidylinositol (GPI) molecules (also protein-free GPIs or free GPIs) have been reported to be particularly abundant in some parasitic protozoa and mediate strong immunomodulatory effects on the host immune system. In the work at hand we have investigated the existence of free GPIs in Babesia bovis. Comparative thin layer chromatographic analysis of the protein-free glycolipid fraction of in vitro cultured B. bovis merozoites and erythrocyte membranes demonstrated the presence of an abundant parasite-specific band. Its chemical analysis revealed a GPI species containing a chain of two mannose residues, N-glucosamine and non-acylated inositol. The lipid moiety linked to inositol was diacylglycerol. The total fatty acid composition showed predominantly long-carbon chain molecules (12% of C22:0 and 45% of C24:0). The potential of B. bovis to assemble the presented free GPI species was verified by the existence of seven genes in its genome that putatively encode the following GPI biosynthetic enzymes: PI N-acetyl-GlcN-transferase (PIG-A and GPI-1), N-acetyl-GlcN-PI-de-N-acetylase (PIG-L), acyltransferase (PIG-W), dolichyl-phosphate mannosyl transferase (DPM-1), GPI mannosyltransferase I (PIG-M), and GPI mannosyltransferase II (PIG-V). GPI biosynthesis is vital for the intraerythrocytic parasite stage as mannosamine, an inhibitor of GPI biosynthesis, impaired in vitro growth of B. bovis merozoites. Absence of the vast majority of N-glycan metabolism encoding genes in the B. bovis genome underscores that the growth inhibitory effect of mannosamine is attributable to its interference with GPI biosynthesis and not with assembly of N-linked oligosaccharides, as has been described for higher eukaryotes. Elucidation of the structure and biosynthesis of GPI may allow to facilitate the development of future immune interventions against bovine babesiosis. © 2009 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Babesia bovis contains an abundant parasite-specific protein-free glycerophosphatidylinositol and the genes predicted for its assembly
Autor:Rodríguez, A.E.; Couto, A.; Echaide, I.; Schnittger, L.; Florin-Christensen, M.
Filiación:Institute of Pathobiology, CICVyA, INTA-Castelar, Argentina
National Research Council of Argentina (CONICET), Buenos Aires, Argentina
Department of Organic Chemistry, FCEN, University of Buenos Aires, Argentina
EEA-Rafaela, INTA, Argentina
Palabras clave:Babesia bovis; Glycolipids; Glycosylphosphatidylinositol; GPI; acyltransferase; dolichol phosphate mannosyltransferase 1; glycosylphosphatidylinositol; glycosylphosphatidylinositol mannosyltransferase 1; glycosylphosphatidylinositol mannosyltransferase 2; glycosyltransferase; mannosamine; mannosyltransferase; transferase; transferase GPI 1; transferase PIG L; transferase PIG W; unclassified drug; animal cell; article; Babesia bovis; babesiosis; controlled study; cow; growth inhibition; in vitro study; lipid analysis; lipid composition; nonhuman; phospholipid synthesis; protein assembly; thin layer chromatography; Animals; Babesia bovis; Gene Expression Regulation; Hexosamines; Phosphatidylinositols; Babesia bovis; Bovinae; Eukaryota; Protozoa; Suidae
Año:2010
Volumen:167
Número:2-4
Página de inicio:227
Página de fin:235
DOI: http://dx.doi.org/10.1016/j.vetpar.2009.09.024
Título revista:Veterinary Parasitology
Título revista abreviado:Vet. Parasitol.
ISSN:03044017
CODEN:VPARD
CAS:acyltransferase, 9012-30-0, 9054-54-0; glycosyltransferase, 9033-07-2; mannosamine, 14307-02-9, 2636-92-2; mannosyltransferase, 9055-06-5; transferase, 9047-61-4; Hexosamines; Phosphatidylinositols; mannosamine, 2636-92-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03044017_v167_n2-4_p227_Rodriguez

Referencias:

  • Agusti, R., Couto, A.S., Campetella, O., Frasch, A.C.C., de Lederkremer, R.M., Structure of the glycosylphosphatidylinositol-anchor of the trans-sialidase from Trypanosoma cruzi metacyclic trypomastigote forms (1998) Mol. Biochem. Parasitol., 97, pp. 123-131
  • Anziani, O.S., Guglielmone, A.A., Abdala, A.A., Aguirre, D.H., Mangold, A.J., Acquired protection in Frisian steers with Babesia bovis attenuated vaccine (1993) Rev. Med. Vet., 74, pp. 47-49
  • Basagoudanavar, S.H., Feng, X., Krishnegowda, G., Muthusamy, A., Gowda, D.C., Plasmodium falciparum GPI mannosyltransferase-III is functional with novel signature sequence (2007) Biochem. Biophys. Res. Commun., 364, pp. 748-754
  • Blum, M.L., Down, J.A., Gurnatt, A.M., Carrington, M., Turner, M.J., Wiley, D.C., A structural motif in the variant surface glycoproteins of Trypanosoma brucei (1993) Nature (London), 362, pp. 603-609
  • Bock, R., Jackson, L., de Vos, A., Jorgensen, W., Babesiosis of cattle (2004) Parasitology, 129, pp. 247-269
  • Brayton, K.A., Lau, A.O., Herndon, D.R., Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa (2007) PLoS Pathog., 3, pp. 1401-1413
  • Campanella, J.J., Bitincka, L., Smalley, J., MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences (2004) BMC Bioinform., 4, p. 29
  • de Macedo, S.C., Gerold, P., Jung, N., Azzouz, N., Kimmel, J., Schwartz, R.T., Inhibition of glycosyl-phosphatidylinositol biosynthesis in Plasmodium falciparum by C-2 substituted mannose analogues (2001) Eur. J. Biochem., 268, pp. 6221-6228
  • de Macedo, C.S., Shams-Eldin, H., Smith, T.K., Schwarz, R.T., Azzouz, N., Inhibitors of glycosyl-phosphatidylinositol anchor biosynthesis (2003) Biochimie, 85, pp. 465-472
  • Debierre-Grockiego, F., Campos, M.A., Azzouz, N., Schmidt, J., Bieker, U., Resende, M.G., Mansur, D.S., Schwarz, R.T., Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii (2007) J. Immunol., 179, pp. 1129-1137
  • Delbecq, S., Precigout, E., Vallet, A., Carcy, B., Schetters, T.P., Gorenflot, A., Babesia divergens: cloning and biochemical characterization of Bd37 (2002) Parasitology, 125, pp. 305-312
  • Delorenzi, M., Sexton, A., Shams-Eldin, H., Schwarz, R.T., Speed, T., Schofield, L., Genes for glycosylphosphatidylinositol toxin biosynthesis in Plasmodium falciparum (2002) Infect. Immun., 70, pp. 4510-4522
  • Eisenhaber, B., Bork, P., Eisenhaber, F., Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes (2001) Protein Eng., 14, pp. 17-25
  • Eisenhaber, B., Schneider, G., Wildpaner, M., Eisenhaber, F., A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae, and Schizosaccharomyces pombe (2004) J. Mol. Biol., 337, pp. 243-253
  • Ferguson, M.A., The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors and the contributions of trypanosome research (1999) J. Cell Sci., 112, pp. 2799-2809
  • Ferguson, M.A., Glycosylphosphatidylinositol biosynthesis validated as a drug target for African sleeping sickness (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 10673-10675
  • Ferguson, M.A., Brimacombe, J.S., Cottaz, S., Field, R.A., Güther, L.S., Homans, S.W., McConville, M.J., Ralton, J.E., Glycosyl-phosphatidylinositol molecules of the parasite and the host (1994) Parasitology, 108, pp. S45-S54
  • Ferguson, M.A., Kinoshita, T., Hart, G.W., Glycosylphosphatidylinositol anchors (2008) Essentials of Glycobiology. 2nd edition, , Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanely P., Bertozzi C.R., Hart G.W., and Etzler M.E. (Eds), Cold Spring Harbor Laboratory Press, Woodbury, NY
  • Field, M.C., Medina-Acosta, E., Cross, G.A.M., Inhibition of glycosylphosphatidylinositol biosynthesis in Leishmania mexicana by Mannosamine (1993) J. Biol. Chem., 268, pp. 9570-9577
  • Frank, C.G., Sanyal, S., Rush, J.S., Waechter, C.J., Menon, A.K., Does Rft1 flip an N-glycan lipid precursor? (2008) Nature, 454, pp. E3-E4
  • Gardner, M.J., Bishop, R., Shah, T., de Villiers, E., Carlton, J.M., Hall, N., Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes (2005) Science, 309, pp. 134-137
  • Gerold, P., Dieckmann-Schuppert, A., Schwarz, R.T., Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors (1994) J. Biol. Chem., 269, pp. 2597-2606
  • Gerold, P., Schofield, L., Blackman, M.J., Holder, A.A., Schwartz, R.T., Structural analysis of the glycosyl-phosphatidylinositol membrane anchor of the merozoite surface proteins-1 and -2 of Plasmodium falciparum (1996) Mol. Biochem. Parasitol., 75, pp. 131-143
  • Gerold, P., Jung, N., Azzouz, N., Freiberg, N., Kobe, S., Schwarz, R.T., Biosynthesis of glycosylphosphatidylinositols of Plasmodium falciparum in a cell-free incubation system: inositol acylation is needed for mannosylation of glycosylphosphatidylinositols (1999) Biochem. J., 344, pp. 731-738
  • Goff, W.L., Johnson, W.C., Parish, S.M., Barrington, G.M., Tuo, W., Valdez, R.A., The age-related immunity in cattle to Babesia bovis infection involves the rapid induction of interleukin-12, interferon-gamma and inducible nitric oxide synthase mRNA expression in the spleen (2001) Parasite Immunol., 23, pp. 463-471
  • Goff, W.L., Johnson, W.C., Horn, R.H., Barrington, G.M., Knowles, D.P., The innate immune response in calves to Boophilus microplus tick transmitted Babesia bovis involves type-1 cytokine induction and NK-like cells in the spleen (2003) Parasite Immunol., 25, pp. 185-188
  • Gowda, D.C., Gupta, P., Davidson, E.A., Glycosylphosphatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocytic stage Plasmodium falciparum (1997) J. Biol. Chem., 272, pp. 6428-6439
  • Gowda, D.C., TLR-mediated cell signaling by malaria GPIs (2007) Trends Parasitol., 23, pp. 596-604
  • Güther, M.L.S., Cardoso de Almeida, M.L., Yoshida, N., Ferguson, M.A.J., Structural studies on the GPI membrane anchor of Trypanosoma cruzi 1G7 antigen (1992) J. Biol. Chem., 267, pp. 6820-6828
  • Helenius, J., Ng, D.T., Marolda, C.L., Walter, P., Valvano, M.A., Aebi, M., Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein (2002) Nature, 415, pp. 447-450
  • Hines, S.A., McElwain, T.F., Buening, G.M., Palmer, G.H., Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected cattle (1989) Mol. Biochem. Parasitol., 37, pp. 1-9
  • Hines, S.A., Palmer, G.H., Jasmer, D.P., McGuire, T.C., McElwain, T.F., Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family (1992) Mol. Biochem. Parasitol., 55, pp. 85-94
  • Ilgoutz, S.C., Zawadzki, J.L., Ralton, J.E., McConville, M.J., Evidence that free GPI glycolipids are essential for growth of Leishmania mexicana (1999) EMBO J., 18, pp. 2746-2755
  • Kang, J.Y., Hong, Y., Ashida, H., Shishioh, N., Murakami, Y., Morita, Y.S., Maeda, Y., Kinoshita, T., PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol (2005) J. Biol. Chem., 280, pp. 9489-9497
  • Kimura, E.A., Couto, A.S., Peres, V.J., Casal, O.L., Katzin, A.M., N-linked glycoproteins are related to schizogony of the intraerythrocytic stage in Plasmodium falciparum (1996) J. Biol. Chem., 271, pp. 14452-14461
  • Kinoshita, T., Inoue, N., Dissecting and manipulating the pathway for glycosylphosphatidylinositol-anchor biosynthesis (2000) Curr. Opin. Chem. Biol., 4, pp. 632-638
  • Krause, P.J., Daily, J., Telford, S.R., Vannier, E., Lantos, P., Spielman, A., Shared features in the pathobiology of babesiosis and malaria (2007) Trends Parasitol., 23, pp. 606-610
  • Landoni, M., Duschak, V.G., Peres, V.J., Nonami, H., Erra-Balsells, R., Katzin, A.M., Couto, A.S., Plasmodium falciparum biosynthesizes sulfoglycosphingolipids (2007) Mol. Biochem. Parasitol., 154, pp. 22-29
  • Lisanti, M.P., Field, M.C., Caras, I.W., Menon, A.K., Rodriguez-Boulan, E., Mannosamine, a novel inhibitor of glycosylphosphatidylinositol incorporation into proteins (1991) EMBO J., 10, pp. 1969-1977
  • McConville, M.J., Blackwell, J.M., Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids (1991) J. Biol. Chem., 266, pp. 15170-15179
  • McConville, M.J., Ferguson, M.A., The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes (1993) Biochem. J., 294, pp. 305-324
  • Mendonca-Previato, L., Todeschini, A.R., Heise, N., Previato, J.O., Protozoan parasite-specific carbohydrate structures (2005) Curr. Opin. Struct. Biol., 15, pp. 499-505
  • Murakami, Y., Siripanyapinyo, U., Hong, Y., Kang, J.Y., Ishihara, S., Nakakuma, H., Maeda, Y., Kinoshita, T., PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor (2003) Mol. Biol. Cell, 14, pp. 4285-4295
  • Nagamune, K., Nozaki, T., Maeda, Y., Ohishi, K., Fukuma, T., Hara, T., Schwarz, R.T., Kinoshita, T., Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 10336-10341
  • Naik, R.S., Branch, O.H., Woods, A.S., Vijaykumar, M., Perkins, D.J., Nahlen, B.L., Lal, A.A., Gowda, D.C., Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis (2000) J. Exp. Med., 192, pp. 1563-1576
  • Naik, R.S., Krishnegowda, G., Gowda, D.C., Glucosamine inhibits inositol acylation of the glycosylphosphatidylinositol anchors in intraerythrocytic Plasmodium falciparum (2003) J. Biol. Chem., 278, pp. 2036-2042
  • Orlean, P., Menon, A.K., GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids (2007) J. Lipid Res., 48, pp. 993-1011
  • Pain, A., Renauld, H., Berriman, M., Murphy, L., Yeats, C.A., Weir, W., Genome of the host-cell transforming parasite Theileria annulata compared with T. parva (2005) Science, 309, pp. 131-133
  • Pan, Y.T., Elbein, A.D., The effect of mannosamine on the formation of lipid-linked oligosaccharides and glycoproteins in canine kidney cells (1985) Arch. Biochem. Biophys., 242, pp. 447-456
  • Pan, Y.T., De Gespari, R., Warren, C.D., Elbein, A.D., Formation of unusual mannosamine-containing lipid-linked oligosaccharides in Madin-Darby canine kidney cell cultures (1992) J. Biol. Chem., 267, pp. 8991-8999
  • Pan, Y.T., Kamitani, T., Bhuvaneswaran, C., Hallaq, Y., Warren, C.D., Yeh, E.T.H., Elbein, A.D., Inhibition of glycosylphosphatidylinositol anchor formation by mannosamine (1992) J. Biol. Chem., 267, pp. 21250-21255
  • Ralton, J.E., Milne, K.G., Güther, M.L.S., Field, R.A., Ferguson, M.A.J., The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine (1993) J. Biol. Chem., 268, pp. 24183-24189
  • Ristic, M., Levy, M.G., Babesia bovis: continuous cultivation in a microaerophilous stationary phase culture (1980) Science, 207, pp. 1218-1220
  • Roberts, W.L., Santikarn, S., Reinhold, V.N., Rosenberry, T.L., Structural characterization of the glycosyl-inositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase by fast atom bombardment mass spectrometry (1988) J. Biol. Chem., 263, pp. 18776-18784
  • Ropert, C., Gazzinelli, R.T., Signaling of immune system cells by glycosylphosphatidylinositol (GPI) anchor and related structures derived from parasitic protozoa (2000) Curr. Opin. Microbiol., 3, pp. 395-403
  • Samuelson, J., Banerjee, S., Magnelli, P., Cui, J., Kelleher, D.J., Gilmore, R., Robbins, P.W., The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 1548-1553
  • Schmidt, A., Schwarz, R.T., Gerold, P., Plasmodium falciparum: asexual erythrocytic stages synthesize two structurally distinct free and protein-bound glycosylphosphatidylinositols in a maturation-dependent manner (1998) Exp. Parasitol., 88, pp. 95-102
  • Schofield, L., Hackett, F., Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites (1993) J. Exp. Med., 177, pp. 145-153
  • Schofield, L., Grau, G.E., Immunological processes in malaria pathogenesis (2005) Nat. Rev. Immunol., 5, pp. 722-735
  • Shams-Eldin, H., Azzouz, N., Kedees, M.H., Orlean, P., Kinoshita, T., Schwarz, R.T., The GPI1 homologue from Plasmodium falciparum complements a Saccharomyces cerevisiae GPI anchoring mutant (2002) Mol. Biochem. Parasitol., 120, pp. 73-81
  • Smith, T.K., Sharma, D.K., Crossman, A., Dix, A., Brimacombe, J.S., Ferguson, M.A., Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues (1997) EMBO J., 16, pp. 6667-6675
  • Shoda, L.K., Palmer, G.H., Florin-Christensen, J., Florin-Christensen, M., Godson, D.L., Brown, W.C., Babesia bovis-stimulated macrophages express interleukin-1beta, interleukin-12, tumor necrosis factor alpha, and nitric oxide and inhibit parasite replication in vitro (2000) Infect. Immun., 68, pp. 5139-5145
  • Stanley, P., Schachter, H., Taniguchi, N., N-glycans (2008) Essentials of Glycobiology. 2nd edition, , Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanely P., Bertozzi C.R., Hart G.W., and Etzler M.E. (Eds), Cold Spring Harbor Laboratory Press, Woodbury, NY
  • Tachado, S.D., Gerold, P., Schwarz, R., Novakovic, S., McConville, M., Schofield, L., Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 4022-4027
  • Tachado, S.D., Mazhari-Tabrizi, R., Schofield, L., Specificity in signal transduction among glycosylphosphatidylinositols of Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. (1999) Parasite Immunol., 21, pp. 609-617
  • Umemura, M., Okamoto, M., Nakayama, K., Sagane, K., Tsukahara, K., Hata, K., Jigami, Y., GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast (2003) J. Biol. Chem., 278, pp. 23639-23647
  • von Itzstein, M., Plebanski, M., Cooke, B.M., Coppel, R.L., Hot, sweet and sticky: the glycobiology of Plasmodium falciparum (2008) Trends Parasitol., 24, pp. 210-218
  • Weiss, S.B., Smith, S.W., Kennedy, E.P., The enzymatic formation of lecithin from cytidine diphosphate choline and d-1,2-digliceryde (1958) J. Biol. Chem., 231, pp. 53-64

Citas:

---------- APA ----------
Rodríguez, A.E., Couto, A., Echaide, I., Schnittger, L. & Florin-Christensen, M. (2010) . Babesia bovis contains an abundant parasite-specific protein-free glycerophosphatidylinositol and the genes predicted for its assembly. Veterinary Parasitology, 167(2-4), 227-235.
http://dx.doi.org/10.1016/j.vetpar.2009.09.024
---------- CHICAGO ----------
Rodríguez, A.E., Couto, A., Echaide, I., Schnittger, L., Florin-Christensen, M. "Babesia bovis contains an abundant parasite-specific protein-free glycerophosphatidylinositol and the genes predicted for its assembly" . Veterinary Parasitology 167, no. 2-4 (2010) : 227-235.
http://dx.doi.org/10.1016/j.vetpar.2009.09.024
---------- MLA ----------
Rodríguez, A.E., Couto, A., Echaide, I., Schnittger, L., Florin-Christensen, M. "Babesia bovis contains an abundant parasite-specific protein-free glycerophosphatidylinositol and the genes predicted for its assembly" . Veterinary Parasitology, vol. 167, no. 2-4, 2010, pp. 227-235.
http://dx.doi.org/10.1016/j.vetpar.2009.09.024
---------- VANCOUVER ----------
Rodríguez, A.E., Couto, A., Echaide, I., Schnittger, L., Florin-Christensen, M. Babesia bovis contains an abundant parasite-specific protein-free glycerophosphatidylinositol and the genes predicted for its assembly. Vet. Parasitol. 2010;167(2-4):227-235.
http://dx.doi.org/10.1016/j.vetpar.2009.09.024