Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Thermal expansion produced by laser irradiation of the tunneling junction is analyzed, as a necessary step towards detection and identification of other laser induced currents in scanning tunneling microscopy (STM). Solving a tridimensional heat diffusion model, the amplitude of thermal expansion as a function of the modulation frequency (ω) of the light power, rolls off as 1/ω while the in-phase component rolls off as 1/ω2, both computed at the Gaussian beam center. But shifted from the center a dephasing mechanism appears due to the lateral diffusion of the heat, and the in-phase thermal contribution drops to zero. This behavior can be used to increase the signal to noise ratio without the need of driving the experiment at high frequencies, frequently over the usual cutoff frequency of STM amplifiers. Experiments were carried on using a low power laser on highly oriented pyrolitic graphite (HOPG) and gold samples, showing a qualitative agreement with the model. Thermal expansion produced by laser irradiation of the tunneling junction is analyzed, as a necessary step towards detection and identification of other laser induced currents in scanning tunneling microscopy (STM). Solving a tridimensional heat diffusion model, the amplitude of thermal expansion as a function of the modulation frequency (ω) of the light power, rolls off as 1/ω while the in-phase component rolls off as 1/ω+2$/, both computed at the Gaussian beam center. But shifted from the center a dephasing mechanism appears due to the lateral diffusion of the heat, and the in-phase thermal contribution drops to zero. This behavior can be used to increase the signal to noise ratio without the need of driving the experiment at high frequencies, frequently over the usual cutoff frequency of STM amplifiers. Experiments were carried on using a low power laser on highly oriented pyrolitic graphite (HOPG) and gold samples, showing a qualitative agreement with the model.

Registro:

Documento: Artículo
Título:Avoiding photothermal noise in laser assisted scanning tunneling microscopy
Autor:Landi, S.M.; Bragas, A.V.; Coy, J.A.; Martínez, O.E.
Ciudad:Amsterdam, Netherlands
Filiación:Dpto. Física, FCEN, UBA, Pabellon I Cd. U., Buenos Aires, Argentina
Palabras clave:Laser assisted; Photothermal currents; Scanning tunneling microscope; Thermal noise; Computational methods; Electric currents; Gold; Graphite; Laser beam effects; Mathematical models; Signal to noise ratio; Thermal diffusion; Thermal expansion; Gaussian beams; Photothermal noise; Scanning tunneling microscopy; analytic method; article; frequency modulation; heat transfer; laser; mathematical analysis; scanning tunneling microscopy; signal noise ratio; thermal exposure
Año:1999
Volumen:77
Número:3-4
Página de inicio:207
Página de fin:211
DOI: http://dx.doi.org/10.1016/S0304-3991(99)00038-8
Título revista:Ultramicroscopy
Título revista abreviado:Ultramicroscopy
ISSN:03043991
CODEN:ULTRD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043991_v77_n3-4_p207_Landi

Referencias:

  • Amer, N.M., Skumanich, A., Ripple, D., (1986) Appl. Phys. Lett., 49, p. 137
  • Grafström, S., Kowalski, J., Neumann, R., Probst, O., Wörtge, M., (1991) J. Vac. Sci. Technol. B, 9, p. 568
  • Mamin, H.J., Birk, H., Wimmer, P., Rugar, D., (1994) J. Appl. Phys., 75, p. 161
  • Krieger, W., Suzuki, T., Völcker, M., Walther, H., (1990) Phys. Rev. B, 41, p. 10229
  • Völcker, M., Krieger, W., Walther, H., (1991) Phys. Rev. Lett., 66, p. 1717
  • Völcker, M., Krieger, W., Suzuki, T., Walther, H., (1991) J. Vac. Sci. Technol. B, 9, p. 541
  • Sammet, C., Völcker, M., Krieger, W., Walther, H., (1995) J. Appl. Phys., 78, p. 6477
  • Prins, M.W.J., Jansen, R., Groeneveld, R.H.M., Van Gelder, A.P., Van Kempen, H., (1996) Phys. Rev. B, 53, p. 8090
  • Prins, M.W.J., Van Der Wielen, M.C.M.M., Jansen, R., Abraham, D.L., Van Kempen, H., (1994) Appl. Phys. Lett., 64, p. 1207
  • Bragas, A.V., Landi, S.M., Coy, J.A., Martínez, O.E., (1997) J. Appl. Phys., 82, p. 4153
  • Chen, C.J., (1993) Introduction to Scanning Tunneling Microscopy, , Oxford: Oxford University Press
  • Wiesendanger, R., (1994) Scanning Probe Microscopy and Spectroscopy, , Cambridge: Cambridge University Press
  • Jackson, W.B., Amer, N.M., Boccara, A.C., Fournier, D., (1981) Appl. Opt., 8, p. 1333

Citas:

---------- APA ----------
Landi, S.M., Bragas, A.V., Coy, J.A. & Martínez, O.E. (1999) . Avoiding photothermal noise in laser assisted scanning tunneling microscopy. Ultramicroscopy, 77(3-4), 207-211.
http://dx.doi.org/10.1016/S0304-3991(99)00038-8
---------- CHICAGO ----------
Landi, S.M., Bragas, A.V., Coy, J.A., Martínez, O.E. "Avoiding photothermal noise in laser assisted scanning tunneling microscopy" . Ultramicroscopy 77, no. 3-4 (1999) : 207-211.
http://dx.doi.org/10.1016/S0304-3991(99)00038-8
---------- MLA ----------
Landi, S.M., Bragas, A.V., Coy, J.A., Martínez, O.E. "Avoiding photothermal noise in laser assisted scanning tunneling microscopy" . Ultramicroscopy, vol. 77, no. 3-4, 1999, pp. 207-211.
http://dx.doi.org/10.1016/S0304-3991(99)00038-8
---------- VANCOUVER ----------
Landi, S.M., Bragas, A.V., Coy, J.A., Martínez, O.E. Avoiding photothermal noise in laser assisted scanning tunneling microscopy. Ultramicroscopy. 1999;77(3-4):207-211.
http://dx.doi.org/10.1016/S0304-3991(99)00038-8