Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Due to its widespread incidence, maternal malnutrition remains one of the major non-genetic factors affecting the development of newborn's brain. While all nutrients have certain influence on brain maturation, proteins appear to be the most critical for the development of neurological functions. An increasing number of studies point out that the effects of early-life nutritional inadequacy has long lasting effects on the brain and lead to permanent deficits in learning and behavior. Epigenetic mechanisms provide a potential link between the nutrition status during critical periods and changes in gene expression that may lead to disease phenotypes. Among those epigenetic mechanisms microRNAs (miRNAs) emerge as promising molecules for the link between nutrition and gene expression due to their relevance in many central nervous system functions. The objective of the current study was to evaluate the impact of perinatal protein malnutrition on the development of male and female mice offspring and to analyze the expression of the genes involved in the miRNA biogenesis pathway in different mouse brain structures. We demonstrated that early nutritional stress such as exposition to a protein-deficient diet during gestation and lactation reduced the hippocampal weight, delayed offspring's development and deregulated the expression of Xpo5 and Ago2 genes in hippocampus and hypothalamus of weanling mice. Moreover, an overall increase in mature miRNAs was consistent with the induction of Xpo5 mRNA. Altered miRNA biogenesis could modify the availability and functionality of miRNA becoming a causal factor of the adverse effects of protein malnutrition. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Perinatal protein malnutrition alters expression of miRNA biogenesis genes Xpo5 and Ago2 in mice brain
Autor:Berardino, B.G.; Fesser, E.A.; Cánepa, E.T.
Filiación:Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasCiudad de Buenos Aires, Argentina
Palabras clave:Early life adversity; Hippocampus; Hypothalamus; Mouse; Neurodevelopment; Undernutrition; argonaute 2 protein; exportin 5; microRNA; argonaute protein; EIF2C2 protein, mouse; karyopherin; microRNA; Xpo5 protein, mouse; animal tissue; Article; biogenesis; brain; brain weight; controlled study; female; gene expression; gestation period; hippocampus; hypertension; hypothalamus; insulin resistance; kwashiorkor; lactation; male; mouse; nonhuman; perinatal period; pregnancy; priority journal; progeny; protein restriction; animal; brain; genetics; maternal nutrition; metabolism; prenatal exposure; protein deficiency; protein restriction; Animals; Argonaute Proteins; Brain; Diet, Protein-Restricted; Female; Karyopherins; Lactation; Male; Maternal Nutritional Physiological Phenomena; Mice; MicroRNAs; Pregnancy; Prenatal Exposure Delayed Effects; Prenatal Nutritional Physiological Phenomena; Protein Deficiency
Año:2017
Volumen:647
Página de inicio:38
Página de fin:44
DOI: http://dx.doi.org/10.1016/j.neulet.2017.03.012
Título revista:Neuroscience Letters
Título revista abreviado:Neurosci. Lett.
ISSN:03043940
CODEN:NELED
CAS:Argonaute Proteins; EIF2C2 protein, mouse; Karyopherins; MicroRNAs; Xpo5 protein, mouse
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043940_v647_n_p38_Berardino

Referencias:

  • Galler, J.R., Bryce, C.P., Waber, D., Hock, R.S., Exner, N., Eaglesfield, D., Fitzmaurice, G., Harrison, R., Early childhood malnutrition predicts depressive symptoms at ages 11–17., J. Child Psychol (2010) Psychiatry, 51, pp. 789-798
  • de Rooij, S.R., Wouters, H., Yonker, J.E., Painter, R.C., Roseboom, T.J., Prenatal undernutrition and cognitive function in late adulthood (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 16881-16886
  • Morgane, P.J., Mokler, D.J., Galler, J.R., Effects of prenatal protein malnutrition on the hippocampal formation (2002) Neurosci. Biobehav. Rev., 26, pp. 471-483
  • Alamy, M., Bengelloun, W.A., Malnutrition and brain development: an analysis of the effects of inadequate diet during different stages of life in rat (2012) Neurosci. Biobehav. Rev., 36, pp. 1463-1480
  • Núñez, H., Ruiz, S., Soto-Moyano, R., Navarrete, M., Valladares, L., White, A., Pérez, H., Fetal undernutrition induces overexpression of CRH mRNA and CRH protein in hypothalamus and increases CRH and corticosterone in plasma during postnatal life in the rat (2008) Neurosci. Lett., 448, pp. 115-119
  • Victora, C.G., Adair, L., Fall, C., Hallal, P.C., Martorell, R., Richter, L., Sachdev, H.S., Maternal and child undernutrition: consequences for adult health and human capital (2008) Lancet, 371, pp. 340-357
  • Galler, J.R., Bryce, C.P., Zichlin, M.L., Waber, D.P., Exner, N., Fitzmaurice, G.M., Costa, P.T., Malnutrition in the first year of life and personality at age 40 (2013) J. Child Psychol. Psychiatry, 54, pp. 911-919
  • Chen, M., Zhang, L., Epigenetic mechanisms in developmental programming of adult disease (2011) Drug Discov. Today, 16, pp. 1007-1018
  • Kundakovic, M., Champagne, F., Early-life experience, epigenetics, and the developing brain (2014) Neuropsychopharmacology, pp. 1-13
  • Bredy, T.W., Lin, Q., Wei, W., Baker-Andresen, D., Mattick, J.S., MicroRNA regulation of neural plasticity and memory (2011) Neurobiol. Learn. Mem., 96, pp. 89-94
  • Kim, V.N., MicroRNA biogenesis: coordinated cropping and dicing (2005) Nat. Rev. Mol. Cell Biol., 6, pp. 376-385
  • Bohacek, J., Gapp, K., Saab, B.J., Mansuy, I.M., Transgenerational epigenetic effects on brain functions (2013) Biol. Psychiatry, 73, pp. 313-320
  • Schouten, M., Aschrafi, A., Bielefeld, P., Doxakis, E., Fitzsimons, C.P., microRNAs and the regulation of neuronal plasticity under stress conditions (2013) Neuroscience, 241, pp. 188-205
  • McNeill, E., Van Vactor, D., MicroRNAs shape the neuronal landscape (2012) Neuron, 75, pp. 363-379
  • Ha, M., Kim, V.N., Regulation of microRNA biogenesis (2014) Nat. Rev. Mol. Cell Biol., 15, pp. 509-524
  • Pasquinelli, A.E., MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship (2012) Nat. Rev. Genet., 13, pp. 271-282
  • Haramati, S., Chapnik, E., Sztainberg, Y., Eilam, R., Zwang, R., Gershoni, N., McGlinn, E., Hornstein, E., Hornstein, miRNA malfunction causes spinal motor neuron disease (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 13111-13116
  • Eitan, C., Hornstein, E., Vulnerability of microRNA biogenesis in FTD-ALS (2016) Brain Res., pp. 1-9
  • Wingo, A.P., Almli, L.M., Stevens, J.J., Klengel, T., Uddin, M., Li, Y., Bustamante, A.C., Ressler, K.J., DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression (2015) Nat. Commun., 6, p. 10106
  • Sellier, C., Freyermuth, F., Tabet, R., Tran, T., He, F., Ruffenach, F., Alunni, V., Todd, P.K., Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome (2013) Cell Rep., 3, pp. 869-880. , http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed/?term=Sellier+C+Tabet+R, (PubMed – NCBI)
  • Wan, R.-P., Zhou, L.-T., Yang, H.-X., Zhou, Y.-T., Ye, S.-H., Zhao, Q.-H., Gao, M.-M., Long, Y.-S., Involvement of FMRP in primary MicroRNA processing via enhancing Drosha translation (2016) Mol. Neurobiol.
  • Belluscio, L.M., Berardino, B.G., Ferroni, N.M., Ceruti, J.M., Cánepa, E.T., Early protein malnutrition negatively impacts physical growth and neurological reflexes and evokes anxiety and depressive-like behaviors (2014) Physiol. Behav., 129, pp. 237-254
  • Sugden, M.C., Holness, M.J., Gender-specific programming of insulin secretion and action (2002) J. Endocrinol., 175, pp. 757-767. , http://www.ncbi.nlm.nih.gov/pubmed/12475386, (Accessed 14 January 2017)
  • McMullen, S., Langley-Evans, S.C., Maternal low-protein diet in rat pregnancy programs blood pressure through sex-specific mechanisms (2005) Am. J. Physiol. Regul. Integr. Comp. Physiol., 288, pp. R85-R90
  • Reeves, P.G., Nielsen, F.H., Fahey, G.C., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet (1993) J.Nutr, 123, pp. 1939-1951
  • Grubbs, F., Procedures for detecting outlying observations in samples (1969) Technometrics, 11, pp. 1-21
  • Murgatroyd, C., Spengler, D., Epigenetic programming of the HPA axis: early life decides (2011) Stress, 14, pp. 581-589
  • Powell, S.B., Sejnowski, T.J., Behrens, M.M., Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia (2012) Neuropharmacology, 62, pp. 1322-1331
  • Moura, A.P., Parmeggiani, B., Grings, M., Alvorcem, L.D.M., Boldrini, R.M., Bumbel, A.P., Motta, M.M., Leipnitz, G., Intracerebral glycine administration impairs energy and redox homeostasis and induces glial reactivity in cerebral cortex of newborn rats (2015) Mol. Neurobiol.
  • Secher, T., Novitskaia, V., Berezin, V., Bock, E., Glenthøj, B., Klementiev, B., A neural cell adhesion molecule-derived fibroblast growth factor receptor agonist, the FGL-peptide, promotes early postnatal sensorimotor development and enhances social memory retention (2006) Neuroscience, 141, pp. 1289-1299
  • Geuze, E., Vermetten, E., Bremner, J.D., MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders (2005) Mol. Psychiatry, 10, pp. 160-184
  • Gilbertson, M.W., Shenton, M.E., Ciszewski, A., Kasai, K., Lasko, N.B., Orr, S.P., Pitman, R.K., Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma (2002) Nat. Neurosci., 5, pp. 1242-1247
  • Figueiredo, Í.L., Frota, P.B., da Cunha, D.G., da Silva Raposo, R., Canuto, K.M., de Andrade, G.M., Sousa, N., Oriá, R.B., Prolonged maternal separation induces undernutrition and systemic inflammation with disrupted hippocampal development in mice (2016) Nutrition, 32, pp. 1019-1027
  • Jahnke, S., Bedi, K.S., Undernutrition during early life increases the level of apoptosis in the dentate gyrus but not in the CA2 + CA3 region of the hippocampal formation (2007) Brain Res., 1143, pp. 60-69
  • Hoeijmakers, L., Lucassen, P.J., Korosi, A., The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function, Front (2015) Mol. Neurosci., 7, pp. 1-16
  • Sabirzhanov, B., Stoica, B.A., Zhao, Z., Loane, D.J., Wu, J., Dorsey, S.G., Faden, A.I., miR-711 upregulation induces neuronal cell death after traumatic brain injury (2016) Cell Death Differ., 11, pp. 654-668
  • Shi, Y., Zhao, X., Hsieh, J., Wichterle, H., Impey, S., Banerjee, S., Neveu, P., Kosik, K.S., MicroRNA regulation of neural stem cells and neurogenesis (2010) J. Neurosci., 30, pp. 14931-14936
  • Sahay, A., Hen, R., Adult hippocampal neurogenesis in depression (2007) Nat. Neurosci., 10, pp. 1110-1115
  • Korosi, A., Naninck, E.F.G., Oomen, C., Schouten, M., Krugers, H., Fitzsimons, C., Lucassen, P.J., Early-life stress mediated modulation of adult neurogenesis and behavior (2012) Behav. Brain Res., 227, pp. 400-409
  • Bale, T.L., Epperson, C.N., Sex differences and stress across the lifespan (2015) Nat. Neurosci., 18, pp. 35-42
  • Gomez, J.L., Luine, V.N., Female rats exposed to stress and alcohol show impaired memory and increased depressive-like behaviors (2014) Physiol. Behav., 123, pp. 47-54
  • Cheng, X., Ku, C.-H., Siow, R.C.M., Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis (2013) Free Radic. Biol. Med., 64, pp. 4-11
  • Bonatto, F., Polydoro, M., Andrades, M.E., da Frota Júnior, M.L.C., Dal-Pizzol, F., Rotta, L.N., Souza, D.O., Moreira, J.C.F., Effect of protein malnutrition on redox state of the hippocampus of rat (2005) Brain Res., 1042, pp. 17-22
  • Yu, J.-Y., Chung, K.-H., Deo, M., Thompson, R.C., Turner, D.L., MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation (2008) Exp. Cell Res., 314, pp. 2618-2633
  • Chi, S.W., Zang, J.B., Mele, A., Darnell, R.B., Argonaute HITS-CLIP decodes\\nmicroRNA–mRNA interaction maps (2009) Nature, 460, pp. 479-486
  • Lee, S.-T., Chu, K., Im, W.-S., Yoon, H.-J., Im, J.-Y., Park, J.-E., Park, K.-H., Roh, J.-K., Altered microRNA regulation in Huntington's disease models (2011) Exp. Neurol., 227, pp. 172-179
  • Melo, S.A., Moutinho, C., Ropero, S., Calin, G.A., Rossi, S., Spizzo, R., Fernandez, A.F., Esteller, M., A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells (2010) Cancer Cell, 18, pp. 303-315
  • Henshall, D.C., MicroRNA and epilepsy: profiling, functions and potential clinical applications (2014) Curr. Opin. Neurol., 27, pp. 199-205
  • Schaefer, A., Im, H.-I., Venø, M.T., Fowler, C.D., Min, A., Intrator, A., Kjems, J., Greengard, P., Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction (2010) J. Exp. Med., 207, pp. 1843-1851
  • Ye, Z., Jin, H., Qian, Q., Argonaute 2: a novel rising star in cancer research (2015) J. Cancer, 6, pp. 877-882

Citas:

---------- APA ----------
Berardino, B.G., Fesser, E.A. & Cánepa, E.T. (2017) . Perinatal protein malnutrition alters expression of miRNA biogenesis genes Xpo5 and Ago2 in mice brain. Neuroscience Letters, 647, 38-44.
http://dx.doi.org/10.1016/j.neulet.2017.03.012
---------- CHICAGO ----------
Berardino, B.G., Fesser, E.A., Cánepa, E.T. "Perinatal protein malnutrition alters expression of miRNA biogenesis genes Xpo5 and Ago2 in mice brain" . Neuroscience Letters 647 (2017) : 38-44.
http://dx.doi.org/10.1016/j.neulet.2017.03.012
---------- MLA ----------
Berardino, B.G., Fesser, E.A., Cánepa, E.T. "Perinatal protein malnutrition alters expression of miRNA biogenesis genes Xpo5 and Ago2 in mice brain" . Neuroscience Letters, vol. 647, 2017, pp. 38-44.
http://dx.doi.org/10.1016/j.neulet.2017.03.012
---------- VANCOUVER ----------
Berardino, B.G., Fesser, E.A., Cánepa, E.T. Perinatal protein malnutrition alters expression of miRNA biogenesis genes Xpo5 and Ago2 in mice brain. Neurosci. Lett. 2017;647:38-44.
http://dx.doi.org/10.1016/j.neulet.2017.03.012