Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Many industries have high heavy metals concentrations in their effluents that should be treated before disposal in drains or natural watercourses. When adsorption process is evaluated to generate and implement an efficient, economical and sustainable method suitable for heavy metals removal from contaminated effluents, it is necessary to develop an experimental setup that contains the adsorbent. Ulva lactuca, a marine green alga, was studied as a natural biosorbent for heavy metals at acid pH conditions. Adsorption experiments were carried out in glass columns and in batch where the alga was suspended or fixed in an agar matrix. Langmuir and Freundlich models were applied to the experimental results. Langmuir model best describes the adsorption isotherms in all analyzed cases. The adsorption capacity increases with pH. Kinetic studies demonstrate that, in most studied cases, the adsorption follows a pseudo second order kinetics model. Removal efficiencies of the biomaterial supported in agar or fixed in columns were: fixed in columns > suspended in batch mode > fixed in agar. Finally, the effect of the presence of two sorbates, Cd and Pb, in the solution was measured and results demonstrate that adsorption of both metals are diminished by co/adsorption. © 2012 Elsevier B.V.

Registro:

Documento: Artículo
Título:Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation
Autor:Areco, M.M.; Hanela, S.; Duran, J.; dos Santos Afonso, M.
Filiación:INQUIMAE and Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II 3er Piso, C1428EHA Buenos Aires, Argentina
Programa de Tecnologías de Tratamiento, Centro de Tecnología del Uso del Agua, Instituto Nacional del Agua, Au. Ezeiza-Cañuelas km. 1.62 (1804), Ezeiza, Buenos Aires, Argentina
Palabras clave:Adsorption matrix; Biosorption; Metal removal; Ulva lactuca; Adsorption capacities; Adsorption experiment; Adsorption process; Batch modes; Biosorbents; Experimental setup; Freundlich models; Glass column; Green alga; Heavy metals removals; Kinetic study; Langmuir models; Langmuirs; Metal removal; Metals concentrations; pH condition; Pseudo second order kinetics; Removal efficiencies; Sorbates; Ulva lactuca; Algae; Biological materials; Biosorption; Cadmium; Effluents; Gallium alloys; Lead; Polysaccharides; Zinc compounds; Adsorption; agar; cadmium; copper; glass; lead; zinc; absorption; cadmium; copper; effluent; green alga; lead; pH; phytomass; reaction kinetics; zinc; acidity; adsorption; article; biomass; biosorption; cell wall; controlled study; desorption; green alga; heavy metal removal; ionic strength; isotherm; kinetics; nonhuman; oxidation; pH; room temperature; Ulva lactuca; Adsorption; Agar; Algorithms; Biomass; Cadmium; Copper; Hydrogen-Ion Concentration; Kinetics; Lead; Metals, Heavy; Microscopy, Electron, Scanning; Reproducibility of Results; Solutions; Ulva; Waste Disposal, Fluid; Water Purification; Zinc; algae; Chlorophyta; Ulva lactuca
Año:2012
Volumen:213-214
Página de inicio:123
Página de fin:132
DOI: http://dx.doi.org/10.1016/j.jhazmat.2012.01.073
Título revista:Journal of Hazardous Materials
Título revista abreviado:J. Hazard. Mater.
ISSN:03043894
CODEN:JHMAD
CAS:agar, 9002-18-0; cadmium, 22537-48-0, 7440-43-9; copper, 15158-11-9, 7440-50-8; lead, 13966-28-4, 7439-92-1; zinc, 14378-32-6, 7440-66-6; Agar, 9002-18-0; Cadmium, 7440-43-9; Copper, 7440-50-8; Lead, 7439-92-1; Metals, Heavy; Solutions; Zinc, 7440-66-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043894_v213-214_n_p123_Areco

Referencias:

  • Esteves, A.J.P., Valdman, E., Leite, S.G.F., Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. (2000) Biotechnol. Lett., 22, pp. 499-502
  • Harry, E., Treatment of metal-contaminated wastes: why select a biological process (1999) Trends Biotechnol., 17, pp. 462-465
  • Miretzky, P., Saralegui, A., Fernandez Cirelli, A., Simultaneous heavy metal removal mechanism by dead macrophytes (2006) Chemosphere, 62, pp. 247-254
  • Volesky, B., (2003) Sorption and Biosorption, , BV-Sorbex Inc., Quebec, Canada
  • Ahmady-Asbchin, S., Andres, Y., Gerente, C., Le Cloirec, P., Natural seaweed waste as sorbent for heavy metal removal from solution (2009) Environ. Technol., 30, pp. 755-762
  • Areco, M.M., dos Santos Afonso, M., Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies (2010) Colloid Surf. B, 81, pp. 620-628
  • Jha, B., Basha, S., Jaiswar, S., Mishra, B., Thakur, M.C., Biosorption of Cd(II) and Pb(II) onto brown seaweed, Lobophora variegata (Lamouroux): kinetic and equilibrium studies (2009) Biodegradation, 20, pp. 1-13
  • Kleinubing, S.J., Guibal, E., da Silva, M.G.C., Characterization of Sargassum sp. from Brazil and evaluation of Cu 2+ and Ni 2+ biosorption (2009) Biohydrometallurgy: A Meeting Point Between Microbial Ecology, Metal Recovery Processes and Environmental Remediation, Proceedings, pp. 589-592
  • Saeed, A., Iqbal, M., Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk) (2005) J. Hazard. Mater., 117, pp. 65-73
  • Murphy, V., Hughes, H., McLoughlin, P., Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species (2009) J. Hazard. Mater., 166, pp. 318-326
  • Ariff, A.B., Mel, M., Hasan, M.A., Karim, M.I.A., The kinetics and mechanism of lead (II) biosorption by powderized Rhizopus oligosporus (1999) World J. Microbiol. Biotechnol., 15, pp. 291-298
  • Van der Wal, A., Norde, W., Zhnder, J.B., Lyklema, J., Determination of the total charge in the cell walls of Grampositive bacteria (1997) Colloid Surf. B, 9, pp. 81-100
  • Esposito, A., Paganelli, F., Veglio, F., PH related equilibria models for biosorption in single metal systems (2002) Chem. Eng. Sci., 57, pp. 307-313
  • Valdman, E., Leite, S.G.F., Biosorption of Cd, Zn and Cu by Sargassum sp. waste biomass (2000) Bioprocess. Eng., 22, pp. 171-173
  • Kalyani, S., Srinivasa Rao, P., Krishnaiah, A., Removal of nickel (II) from aqueous solutions marine macroalgae as the sorbing biomass (2004) Chemosphere, 57, pp. 1225-1229
  • Ferraz, A.I., Tavares, A.I., Teixeira, J.A., Cr(III) removal and recovery from Saccharomyces cerevisiae (2004) Chem. Eng. J., 105, pp. 11-20
  • Gong, R., Ding, Y., Liu, H., Chen, Q., Liu, Z., Lead biosorption and desorption by intact and pretreated spirulina maxima biomass (1995) Chemosphere, 58, pp. 125-130
  • Donghee, P., Yeoung-Sang, Y., Chi Kyu, A., Jong Moon, P., Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass (2007) Chemosphere, 66, pp. 939-946
  • Vijayaraghavan, K., Mao, J., Yun, Y.S., Biosorption of methylene blue from aqueous solution using free and polysulfone-immobilized Corynebacterium glutamicum: batch and column studies (2008) Bioresour. Technol., 99, pp. 2864-2871
  • Sengil, I.A., Ozacar, M., Competitive biosorption of Pb2+ Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin (2009) J. Hazard. Mater., 166, pp. 1488-1494
  • Huang, X., Wang, Y., Liao, X., Shi, B., Adsorptive recovery of Au 3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica (2010) J. Hazard. Mater., 183, pp. 793-798
  • Suharso, Buhani, Sumadi, Immobilization of S. duplicatum supported silica gel matrix and its application on adsorption-desorption of Cu (II), Cd (II) and Pb (II) ions (2010) Desalination, 263, pp. 64-69
  • Sun, Y.M., Horng, C.Y., Chang, F.L., Cheng, L.C., Tian, W.X., Biosorption of lead, mercury, and cadmium ions by Aspergillus terreus immobilized in a natural matrix (2010) Pol. J. Microbiol., 59, pp. 37-44
  • Ormerod, E.C., Newman, A.C.D., Water sorption on Ca saturated clays: II. Internal and external surfaces of mortmorillonite (1983) Clay Miner., 18, pp. 289-299
  • Torres Sánchez, R.M., Falasca, S., Specific surface area and surface charges of some argentinian soils (1997) Z. Pflanz. Bodenkunde, 160, pp. 223-226
  • Davis, T.A., Volesky, B., Vieira, R.H.S.F., Sargassum seaweed as biosorbent for heavy metals (2000) Water Res., 34, pp. 4270-4278
  • Shiue, A., Den, W., Kang, Y.H., Hu, S.C., Jou, G.T., Lin, C.H., Hu, V., Lin, S.I., Validation and application of adsorption breakthrough models for the chemical filters used in the make-up air unit (MAU) of a cleanroom (2011) Build. Environ., 46, pp. 468-477
  • Aksu, Z., Gönen, F., Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves (2004) Process Biochem., 39, pp. 599-613
  • Fagundes-Klen, M.R., Veit, M.T., Borba, C.E., Bergamasco, R., de Lima Vaz, L.G., da Silva, E.A., Copper biosorption by biomass of marine alga: study of equilibrium and kinetics in batch system and adsorption/desorption cycles in fixed bed column (2010) Water Air Soil Pollut., 213, pp. 15-26
  • Liu, C.C., Li, Y.S., Chen, Y.M., Wang, M.K., Chiou, C.S., Yang, C.Y., Lin, Y.A., Biosorption of chromium, copper and zinc on rice wine processing waste sludge in fixed bed (2011) Desalination, 267, pp. 20-24
  • Platte, J.A., Marcy, V.M., Photometric determination of zinc with zincón (1959) Anal. Chem., 31, pp. 1226-1228
  • Sandell, E.B., (1959) Colorimetric Determination of Trace Metals, , Interscience Publishers, New York
  • Ho, Y.S., Ofomaja, A.E., Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber (2006) J. Hazard. Mater. B, 129, pp. 137-142
  • Ho, Y.S., McKay, G., Sorption of dyes and copper ions onto biosorbents (2003) Process Biochem., 38, pp. 1047-1061
  • Homagai, P.L., Ghimire, K.N., Inoue, K., Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse (2010) Bioresour. Technol., 101, pp. 2067-2069
  • Guo, X., Zhang, S., Shan, X., Adsorption of metal ions on lignin (2008) J. Hazard. Mater., 151, pp. 134-142
  • Rao, R.A.K., Khan, M.A., Biosorption of bivalent metal ions from aqueous solution by an agricultural waste: kinetics, thermodynamics and environmental effects (2009) Colloid Surf. A, 332, pp. 121-128
  • Solari, P., Zouboulis, A.I., Matis, K.A., Stalidis, G.A., Removal of toxic metal by biosorption onto nonliving sewage sludge (1996) Sep. Sci. Technol., 31, pp. 1075-1092
  • Akhtar, M., Iqbal, S., Kausar, A., Bhanger, M.I., Shaheen, M.A., An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk (2009) Colloid Surf. B, 75, pp. 149-155
  • Li, Q.Z., Chai, L.Y., Yang, Z.H., Wang, Q.W., Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions (2009) Appl. Surf. Sci., 255, pp. 4298-4303
  • Pentari, D., Perdikatsis, V., Katsimicha, D., Kanaki, A., Sorption properties of low calorific value Greek lignites: Removal of lead, cadmium, zinc and copper ions from aqueous solutions (2009) J. Hazard. Mater., 168, pp. 1017-1021
  • Paradossi, G., Cavalieri, F., Pizzoferrato, L., Liquori, A.M., A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva (1999) Int. J. Biol. Macromol., 25, pp. 309-315
  • Stumm, W., Morgan, J.J., (1992) Chemistry of the Solid-Water Interface, , John Wiley & Sons, USA
  • Gurbuz, F., Removal of toxic hexavalent chromium ions from aqueous solution by a natural biomaterial: batch and column adsorption (2009) Adsorpt. Sci. Technol., 27, pp. 745-759
  • Kalavathy, H., Karthik, B., Miranda, L.R., Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: batch and column studies (2010) Colloid Surf. B, 78, pp. 291-302
  • Marandi, R., Ardejani, F.D., Safaei, M., Biosorption of lead and zinc ions by Phanerocheat chrysasporium - research on fixed bed column (2008) Mine Water and the Environment, Proceedings, pp. 293-296

Citas:

---------- APA ----------
Areco, M.M., Hanela, S., Duran, J. & dos Santos Afonso, M. (2012) . Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. Journal of Hazardous Materials, 213-214, 123-132.
http://dx.doi.org/10.1016/j.jhazmat.2012.01.073
---------- CHICAGO ----------
Areco, M.M., Hanela, S., Duran, J., dos Santos Afonso, M. "Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation" . Journal of Hazardous Materials 213-214 (2012) : 123-132.
http://dx.doi.org/10.1016/j.jhazmat.2012.01.073
---------- MLA ----------
Areco, M.M., Hanela, S., Duran, J., dos Santos Afonso, M. "Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation" . Journal of Hazardous Materials, vol. 213-214, 2012, pp. 123-132.
http://dx.doi.org/10.1016/j.jhazmat.2012.01.073
---------- VANCOUVER ----------
Areco, M.M., Hanela, S., Duran, J., dos Santos Afonso, M. Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. J. Hazard. Mater. 2012;213-214:123-132.
http://dx.doi.org/10.1016/j.jhazmat.2012.01.073