Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In biohydrometallurgical processes, a mineral exhibits different oxidation phases due to the system's heterogeneity, especially in heap leach pads. Oxidation chemically modifies the mineral surface altering its interface, and thereby affecting the bacteria-mineral interaction, mineral reactivity and leaching velocity. Given that the mineral can be found in different oxidation states in heap bioleaching processes, three oxidation conditions of FeS2, in which iron and/or sulfur related compounds are formed on the mineral surface were assayed. This paper studies the interaction between the modified surface of a sulfide mineral, FeS2, and 0 K culture medium, typically used in biomining processes. Chemical and electrochemical changes on surfaces were characterized by subjecting them to weathering in an acidic culture medium (pH 1.8), without applying potential or current. The chemical species formed were identified by Raman spectroscopy. The modified pyrite surfaces showed significant interfacial transformations upon immersion in the culture medium, and the formation of passive chemical species, such as elemental sulfur, jarosite, phosphates and oxides, were identified. These interfacial modifications are correlated with changes in the open circuit potential (OCP) values during immersion of pyrite and surface modified pyrites in 0 K culture medium. Electrochemical characterization showed a decrease in mineral oxidation capacity, which directly affects the extent of leaching and possibly, of the interaction with other elements participating in the process, such as microorganisms. To study the interactions among bacteria and the pyrite mineral suffering different surface modifications, the attachment of the bioleaching bacterium Leptospirillum sp. was evaluated. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:Interactions of mimic weathered pyrite surfaces (FeS2) with acidic culture media (0 K): An approach for (bio)leaching applications
Autor:Saavedra, A.; García-Meza, J.V.; Cortón, E.; González, I.
Filiación:Biosensors and Bioanalysis Laboratory (LABB), Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires (UBA), Pabellón 2, Ciudad Autónoma de Buenos Aires, Argentina
Geomicrobiología, Facultad de Ingeniería-Metalurgia, UASLP, Sierra Leona 550, Lomas, San Luis Potosí, 278210, Mexico
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Ciudad de México, 09340, Mexico
Palabras clave:Bacterial attachment; Interfacial modifications; Mineral-culture media interaction; Pyrite oxidation; Pyrite weathering; Raman spectroscopy; Bacteria; Bioleaching; Oxidation; Pyrites; Raman spectroscopy; Weathering; Bacterial attachment; Culture media; Interfacial modification; Pyrite oxidation; Pyrite weathering; Sulfur compounds
Año:2018
Volumen:182
Página de inicio:128
Página de fin:135
DOI: http://dx.doi.org/10.1016/j.hydromet.2018.10.022
Título revista:Hydrometallurgy
Título revista abreviado:Hydrometallurgy
ISSN:0304386X
CODEN:HYDRD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0304386X_v182_n_p128_Saavedra

Referencias:

  • Acevedo, F., Gentina, J.C., García, N., CO2 supply in the biooxidation of an enargite-pyrite gold concentrate (1998) Biotechnol. Lett., 20, pp. 257-259
  • Ahlberg, E., Forssberg, K.S.E., Wang, X., The surface oxidation of pyrite in alkaline solution (1990) J. Appl. Electrochem., 20, pp. 1033-1039
  • Arce, E.M., Gonzalez, I., A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution (2002) Int. J. Miner. Process., 67, pp. 17-28
  • Bard, A.J., Faulkner, L.R., Leddy, J., Zoski, C.G., Electrochemical Methods: Fundamentals and Applications (1980), Wiley New York; Bard, A.J., Parsons, R., Jordan, J., Standard Potentials in Aqueous Solution (1985), IUPAC-Marcel Dekker Inc New York; Bondarenko, G., Gorbaty, Y.E., In situ Raman spectroscopic study of sulfur-saturated water at 1000 bar between 200 and 500°C (1997) Geochim. Cosmochim. Acta, 61, pp. 1413-1420
  • Bonnissel-Gissinger, P., Alnot, M., Ehrhardt, J.J., Behra, P., Surface oxidation of pyrite as a function of pH (1998) Environ. Sci. Technol., 32, pp. 2839-2845
  • Casas-Flores, S., Gómez-Rodríguez, E.Y., García-Meza, J.V., Community of thermoacidophilic and arsenic resistant microorganisms isolated from a deep profile of mine heaps (2015) AMB Express, 5, p. 54
  • Chernyshova, I.V., Hochella, M.F., Jr., Madden, A.S., Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition (2007) Phys. Chem. Chem. Phys., 9, pp. 1736-1750
  • Chio, C.H., Sharma, S.K., Muenow, D.W., Micro-Raman studies of hydrous ferrous sulfates and jarosites (2005) Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 61, pp. 2428-2433
  • Chio, C.H., Sharma, S.K., Ming, L.C., Muenow, D.W., Raman spectroscopic investigation on Jarosite–Yavapaiite stability (2010) Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 75, pp. 162-171
  • Cruz, R., Lázaro, I., Rodríguez, J.M., Monroy, M., González, I., Surface characterization of arsenopyrite in acidic medium by triangular scan voltammetry on carbon paste electrodes (1997) Hydrometallurgy, 46, pp. 303-319
  • Cruz, R., Bertrand, V., Monroy, M., Gonzalez, I., Effect of ́ sulfide impurities on the reactivity of pyrite and pyritic concentrates: a multi-tool approach (2001) Appl. Geochem., 16, pp. 803-819
  • Cruz, R., Lázaro, I., González, I., Monroy, M., Acid dissolution influences bacterial attachment and oxidation of arsenopyrite (2005) Miner. Eng., 18, pp. 1024-1031
  • Davis, G.B., Ritchie, A.I.M., A model of oxidation in pyritic mine wastes: part 1 equations and approximate solution (1986) Appl. Math. Model., 10, pp. 314-322
  • Devasia, P., Natarajan, K., Role of bacterial growth conditions and adhesion in bioleaching of chalcopyrite by Thiobacillus ferrooxidans (1996) Miner. Metall. Proc., 13, pp. 82-86
  • Devasia, P., Natarajan, K.A., Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces (2010) Int. J. Miner. Process., 94, pp. 135-139
  • Devasia, P., Natarajan, K.A., Sathyanarayana, D.N., Rao, G.R., Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces (1993) Appl. Environ. Microbiol., 59, pp. 4051-4055
  • Eghbalnia, M., Dixon, D.G., In situ electrochemical characterization of natural pyrite as a galvanic catalyst using single-particle microelectrode technique in ferric sulfate solutions (2013) J. Solid State Electrochem., 17, pp. 235-267
  • Fang, H.H., Chan, K.Y., Xu, L.C., Quantification of bacterial adhesion forces using atomic force microscopy (AFM) (2000) J. Microbiol. Methods, 40, pp. 89-97
  • Fernandez, M.G.M., Mustin, C., de Donato, P., Barres, O., Marion, P., Berthelin, J., Occurrences at mineral-bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans (1995) Biotechnol. Bioeng., 46, pp. 13-21
  • Florian, B., Noël, N., Thyssen, C., Felschau, I., Sand, W., Some quantitative data on bacterial attachment to pyrite (2011) Miner. Eng., 24, pp. 1132-1138
  • Fredlein, R.A., Damjanovic, A., Bockris, J.O., Differential surface tension measurements at thin solid metal electrodes (1971) Surf. Sci., 25, pp. 261-264
  • Frost, R.L., Fredericks, P.M., Kloprogge, J.T., Hope, G.A., Raman spectroscopy of kaolinites using different excitation wavelengths (2001) J. Raman Spectrosc., 32, pp. 657-663
  • Frost, R.L., Kloprogge, J.T., Martens, W.N., Raman spectroscopy of the arsenates and sulphates of the tsumcorite mineral group (2004) J. Raman Spectrosc., 35, pp. 28-35
  • Hamilton, I.C., Woods, R., An investigation of surface oxidation of pyrite and pyrrhotite by linear potential sweep voltammetry (1981) J. Electroanal. Chem. Interfacial Electrochem., 118, pp. 327-343
  • Harneit, K., Göksel, A., Kock, D., Klock, J.H., Gehrke, T., Sand, W., Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans (2006) Hydrometallurgy, 83, pp. 245-254
  • Hiskey, J.B., Pritzker, M.D., Electrochemical behavior of pyrite in sulfuric acid solutions containing silver ions (1988) J. Appl. Electrochem., 18, pp. 484-490
  • Jehlička, J., Vítek, P., Edwards, H.G.M., Hargreaves, M.D., Čapoun, T., Fast detection of sulphate minerals (gypsum, anglesite, baryte) by a portable Raman spectrometer (2009) J. Raman Spectrosc., 40, pp. 1082-1086
  • Jones, C.A., Kelly, D.P., Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: influence of product and substrate inhibition (2008) J. Chem. Technol. Biotechnol. Biotechnol., 33, pp. 241-261
  • Karthe, S., Szargan, R., Suoninen, E., Oxidation of pyrite surfaces: a photoelectron spectroscopic study (1993) Appl. Surf. Sci., 72, pp. 157-170
  • Kelsall, G.H., Yin, Q., Vaughan, D.J., England, K.E.R., Brandon, N.P., Electrochemical oxidation of pyrite (FeS2) in aqueous electrolytes (1999) J. Electroanal. Chem., 471, pp. 116-125
  • Kim, T.W., Kim, C.J., Chang, Y.K., Ryu, H.W., Cho, K.S., Development of an optimal medium for continuous ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans cells (2002) Biotechnol. Prog., 18, pp. 752-759
  • Lafuente, B., Downs, R.T., Yang, H., Stone, N., The Power of Databases: The RRUFF Project (2015) Highlights in Mineralogical Crystallography, pp. 1-30. , T. Armbruster R.M. Danisi W. De Gruyter Berlin
  • Lara, R.H., Vazquez-Arenas, J., Ramos-Sanchez, G., Galvan, M., Lartundo-Rojas, L., Experimental and theoretical analysis accounting for differences of pyrite and chalcopyrite oxidative behaviors for prospective environmental and bioleaching applications (2015) J. Phys. Chem. C, 119, pp. 18364-18379
  • Lázaro, I., Gonzalez, I., Electrochemical study of orpiment (As2S3) and realgar (As2S2) in acidic medium (1997) J. Electrochem. Soc., 144, p. 4128
  • Lázaro, I., Cruz, R., González, I., Monroy, M., Electrochemical oxidation of arsenopyrite in acidic media (1997) Int. J. Miner. Process., 50, pp. 63-75
  • Liu, Y., Dang, Z., Wu, P., Lu, J., Shu, X., Zheng, L., Influence of ferric iron on the electrochemical behavior of pyrite (2011) Ionics, 17, pp. 169-176
  • López-Cázares, I., Patrón-Soberano, O., García-Meza, J.V., Bioelectrochemical changes during the early stages of chalcopyrite interaction with Acidithiobacillus thiooxidans and Leptospirillum sp (2017) Fortschr. Mineral., 7, p. 156
  • Marshall, K.C., Adsorption and adhesion processes in microbial growth at interfaces (1986) Adv. Colloid Interf. Sci., 25, pp. 59-86
  • McGuire, M.M., Hamers, R.J., Extraction and quantitative analysis of elemental sulfur from sulfide mineral surfaces by high-performance liquid chromatography (2000) Environ. Sci. Technol., 34, pp. 4651-4655
  • Moslemi, H., Shamsi, P., Habashi, F., Pyrite and pyrrhotite open circuit potentials study: Effects on flotation (2011) Miner. Eng., 24, pp. 1038-1045
  • Murr, L.E., Brierly, J.M., The use of large-scale test facilities in studies of the role of microorganisms in commercial leaching operations (1978) Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, pp. 491-520. , L.E. Murr L.R. Torma J.M. Brierley Elsevier New York
  • Mustin, J., Berthelin, P., De Donato, P., Marion, A., Surface Sulphur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans (1993) FEMS Microbial., 11, pp. 7 l-78
  • Mycroft, J.R., Bancroft, G.M., McIntyre, N.S., Lorimer, J.W., Hill, I.R., Detection of Sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-Ray photoelectron spectroscopy and Raman spectroscopy (1990) J. Electroanal. Chem. Interfacial Electrochem., 292, pp. 139-152
  • Ohmura, N., Kitamura, K., Saiki, H., Selective adhesion of Thiobacillus ferrooxidans to pyrite (1993) Appl. Environ. Microbiol., 59, pp. 4044-4050
  • Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W., Bioleaching review part a (2003) Appl. Microbiol. Biotechnol., 63, pp. 239-248
  • Saavedra, A., Figueredo, F., Cortón, E., Abrevaya, X.C., An electrochemical sensing approach for scouting microbial chemolithotrophic metabolisms (2018) Bioelectrochemistry, 123, pp. 125-136
  • Sasaki, K., Tsunekawa, M., Ohtsuka, T., Konno, H., The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering (1998) Colloids Surf. A Physicochem. Eng. Asp., 133, pp. 269-278
  • Schönleber, M., Klotz, D., Ivers-Tiffée, E., A method for improving the robustness of linear Kramers-Kronig validity tests (2014) Electrochim. Acta, 131, pp. 20-27
  • Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts (2004), Wiley New York; Toniazzo, V., Mustin, C., Portal, J.M., Humbert, B., Benoit, R., Erre, R., Elemental sulfur at the pyrite surfaces: speciation and quantification (1999) Appl. Surf. Sci., 143, pp. 229-237
  • Tuovinen, O.H., Kelly, D.P., Studies on the growth of Thiobacillus ferrooxidans (1973) Arch. Mikrobiol., 88, pp. 285-298
  • Urbano, G., Reyes, V.E., Veloz, M.A., González, I., Pyrite−arsenopyrite galvanic interaction and electrochemical reactivity (2008) J. Phys. Chem. C, 112, pp. 10453-10461
  • Vera, M., Schippers, A., Sand, W., Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part a (2013) Appl. Microbiol. Biotechnol., 97, pp. 7529-7541
  • Watling, H.R., The bioleaching of sulphide minerals with emphasis on copper sulphides: a review (2006) Hydrometallurgy, 84, pp. 81-108
  • Xia, J., Yang, Y., He, H., Zhao, X., Liang, C., Zheng, L., Ma, C., Qiu, G., Surface analysis of sulfur speciation on pyrite bioleached by extreme thermophile Acidianus manzaensis using Raman and XANES spectroscopy (2010) Hydrometallurgy, 100, pp. 129-135
  • Yang, Y., Harmer, S., Chen, M., Synchrotron-based XPS and NEXAFS study of surface chemical species during electrochemical oxidation of chalcopyrite (2015) Hydrometallurgy, 156, pp. 89-98
  • Zhang, S., Liu, W., Application of aerial image analysis for assessing particle size segregation in dump leaching (2017) Hydrometallurgy, 171, pp. 99-105

Citas:

---------- APA ----------
Saavedra, A., García-Meza, J.V., Cortón, E. & González, I. (2018) . Interactions of mimic weathered pyrite surfaces (FeS2) with acidic culture media (0 K): An approach for (bio)leaching applications. Hydrometallurgy, 182, 128-135.
http://dx.doi.org/10.1016/j.hydromet.2018.10.022
---------- CHICAGO ----------
Saavedra, A., García-Meza, J.V., Cortón, E., González, I. "Interactions of mimic weathered pyrite surfaces (FeS2) with acidic culture media (0 K): An approach for (bio)leaching applications" . Hydrometallurgy 182 (2018) : 128-135.
http://dx.doi.org/10.1016/j.hydromet.2018.10.022
---------- MLA ----------
Saavedra, A., García-Meza, J.V., Cortón, E., González, I. "Interactions of mimic weathered pyrite surfaces (FeS2) with acidic culture media (0 K): An approach for (bio)leaching applications" . Hydrometallurgy, vol. 182, 2018, pp. 128-135.
http://dx.doi.org/10.1016/j.hydromet.2018.10.022
---------- VANCOUVER ----------
Saavedra, A., García-Meza, J.V., Cortón, E., González, I. Interactions of mimic weathered pyrite surfaces (FeS2) with acidic culture media (0 K): An approach for (bio)leaching applications. Hydrometallurgy. 2018;182:128-135.
http://dx.doi.org/10.1016/j.hydromet.2018.10.022