Artículo

Ladelfa, M.F.; Peche, L.Y.; Toledo, M.F.; Laiseca, J.E.; Schneider, C.; Monte, M. "Tumor-specific MAGE proteins as regulators of p53 function" (2012) Cancer Letters. 325(1):11-17
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Since its discovery in 1991, the knowledge about the tumor specific melanoma antigen gene (MAGE-I) family has been continuously increasing. Initially, MAGE-I proteins were considered as selective targets for immunotherapy. More recently, emerging data obtained from different cellular mechanisms controlled by MAGE-I proteins suggest a key role in the regulation of important pathways linked to cell proliferation. This is in part due to the ability of some MAGE-I proteins to control the p53 tumor suppressor. In this review, we focus on the mechanisms proposed to explain how MAGE-I proteins affect p53 functions. © 2012 Elsevier Ireland Ltd.

Registro:

Documento: Artículo
Título:Tumor-specific MAGE proteins as regulators of p53 function
Autor:Ladelfa, M.F.; Peche, L.Y.; Toledo, M.F.; Laiseca, J.E.; Schneider, C.; Monte, M.
Filiación:Departamento de Química Biológica, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Padriciano 99, Trieste 34149, Italy
Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, p.le Kolbe 4, Udine 33100, Italy
Palabras clave:Anticancer therapies; MAGE; P53; Transcriptional inhibition; etoposide; histone deacetylase inhibitor; melanoma antigen 1; protein Bax; protein p53; survivin; trichostatin A; carcinogenesis; cell proliferation; drug cytotoxicity; drug targeting; gene expression regulation; head and neck carcinoma; human; melanoma; multiple myeloma; nonhuman; priority journal; protein expression; protein family; protein function; sequence homology; short survey; Animals; Cell Growth Processes; Humans; Melanoma; Melanoma-Specific Antigens; Tumor Suppressor Protein p53
Año:2012
Volumen:325
Número:1
Página de inicio:11
Página de fin:17
DOI: http://dx.doi.org/10.1016/j.canlet.2012.05.031
Título revista:Cancer Letters
Título revista abreviado:Cancer Lett.
ISSN:03043835
CODEN:CALED
CAS:etoposide, 33419-42-0; survivin, 195263-98-0; trichostatin A, 58880-19-6; Melanoma-Specific Antigens; Tumor Suppressor Protein p53
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043835_v325_n1_p11_Ladelfa

Referencias:

  • van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., Boon, T., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma (1991) Science, 254, pp. 1643-1647
  • Barker, P.A., Salehi, A., The MAGE proteins: emerging roles in cell cycle progression, apoptosis, and neurogenetic disease (2002) J. Neurosci. Res., 67, pp. 705-712
  • De Smet, C., Loriot, A., Boon, T., Promoter-dependent mechanism leading to selective hypomethylation within the 5' region of gene MAGE-A1 in tumor cells (2004) Mol. Cell. Biol., 24, pp. 4781-4790
  • De Smet, C., Lurquin, C., Lethe, B., Martelange, V., Boon, T., DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter (1999) Mol. Cell. Biol., 19, pp. 7327-7335
  • Tachibana, M., Ueda, J., Fukuda, M., Takeda, N., Ohta, T., Iwanari, H., Sakihama, T., Shinkai, Y., Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9 (2005) Genes. Dev., 19, pp. 815-826
  • Tachibana, M., Sugimoto, K., Nozaki, M., Ueda, J., Ohta, T., Ohki, M., Fukuda, M., Shinkai, Y., G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis (2002) Genes. Dev., 16, pp. 1779-1791
  • James, S.R., Link, P.A., Karpf, A.R., Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b (2006) Oncogene, 25, pp. 6975-6985
  • Vatolin, S., Abdullaev, Z., Pack, S.D., Flanagan, P.T., Custer, M., Loukinov, D.I., Pugacheva, E., Lobanenkov, V.V., Conditional expression of the CTCF-paralogous transcriptional factor BORIS in normal cells results in demethylation and derepression of MAGE-A1 and reactivation of other cancer-testis genes (2005) Cancer Res., 65, pp. 7751-7762
  • Yang, B., O'Herrin, S., Wu, J., Reagan-Shaw, S., Ma, Y., Nihal, M., Longley, B.J., Select cancer testes antigens of the MAGE-A, -B, and -C families are expressed in mast cell lines and promote cell viability in vitro and in vivo (2007) J. Invest. Dermatol., 127, pp. 267-275
  • Gaudet, F., Hodgson, J.G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J.W., Leonhardt, H., Jaenisch, R., Induction of tumors in mice by genomic hypomethylation (2003) Science, 300, pp. 489-492
  • Shin, K.C., Choi, E.Y., Chung, J.H., Jeon, C., Lee, K.H., Clinical application of MAGE A1-6 RT-nested PCR for diagnosis of lung cancer invisible by bronchoscopy (2012) Anticancer Res., 32, pp. 163-167
  • Hussein, Y.M., Ghareib, A.F., Mohamed, R.H., Radwan, M.I., Elsawy, W.H., MAGE-3 and MAGE-4 genes as possible markers for early detection of metastases in hepatitis C virus Egyptian patients complicated by hepatocellular carcinoma (2011) Med. Oncol.
  • Kim, H., Kim, S.J., Lee, S.H., Seong, H.S., Lee, K.O., Jeon, C.H., Hong, Y.J., Kim, T.H., Usefulness of melanoma antigen (MAGE) gene analysis in tissue samples from percutaneous needle aspiration biopsy of suspected lung cancer lesions (2010) Lung Cancer, 69, pp. 284-288
  • Caballero, O.L., Chen, Y.T., Cancer/testis (CT) antigens: potential targets for immunotherapy (2009) Cancer Sci., 100, pp. 2014-2021
  • Yang, B., O'Herrin, S.M., Wu, J., Reagan-Shaw, S., Ma, Y., Bhat, K.M., Gravekamp, C., Longley, B.J., MAGE-A, mMAGE-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines (2007) Cancer Res., 67, pp. 9954-9962
  • Liu, W., Cheng, S., Asa, S.L., Ezzat, S., The melanoma-associated antigen A3 mediates fibronectin-controlled cancer progression and metastasis (2008) Cancer Res., 68, pp. 8104-8112
  • Sang, M., Lian, Y., Zhou, X., Shan, B., MAGE-A family: attractive targets for cancer immunotherapy (2011) Vaccine, 29, pp. 8496-8500
  • Sherr, C.J., Weber, J.D., The ARF/p53 pathway (2000) Curr. Opin. Genet. Dev., 10, pp. 94-99
  • Helton, E.S., Chen, X., P53 modulation of the DNA damage response (2007) J. Cell Biochem., 100, pp. 883-896
  • Vousden, K.H., Lane, D.P., P53 in health and disease (2007) Nat. Rev. Mol. Cell. Biol., 8, pp. 275-283
  • Petitjean, A., Mathe, E., Kato, S., Ishioka, C., Tavtigian, S.V., Hainaut, P., Olivier, M., Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database (2007) Hum. Mutat., 28, pp. 622-629
  • Levine, A.J., The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53 (2009) Virology, 384, pp. 285-293
  • Monte, M., Simonatto, M., Peche, L.Y., Bublik, D.R., Gobessi, S., Pierotti, M.A., Rodolfo, M., Schneider, C., MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 11160-11165
  • Wang, C., Ivanov, A., Chen, L., Fredericks, W.J., Seto, E., Rauscher, F.J., Chen, J., MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation (2005) Embo. J., 24, pp. 3279-3290
  • Wang, C., Rauscher, F.J., Cress, W.D., Chen, J., Regulation of E2F1 function by the nuclear corepressor KAP1 (2007) J. Biol. Chem., 282, pp. 29902-29909
  • Doyle, J.M., Gao, J., Wang, J., Yang, M., Potts, P.R., MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases (2010) Mol. Cell., 39, pp. 963-974
  • Ivanov, A.V., Peng, H., Yurchenko, V., Yap, K.L., Negorev, D.G., Schultz, D.C., Psulkowski, E., Rauscher, F.J., PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing (2007) Mol. Cell., 28, pp. 823-837
  • Feng, Y., Gao, J., Yang, M., When MAGE meets RING: insights into biological functions of MAGE proteins (2011) Protein Cell, 2, pp. 7-12
  • Marcar, L., Maclaine, N.J., Hupp, T.R., Meek, D.W., MAGE-A cancer/testis antigens inhibit p53 function by blocking its interaction with chromatin (2010) Cancer Res., 70, pp. 10362-10370
  • Vousden, K.H., Prives, C., Blinded by the light: the growing complexity of p53 (2009) Cell, 137, pp. 413-431
  • Liu, B., Chen, Y., St Clair, D.K., ROS and p53: a versatile partnership (2008) Free Radic. Biol. Med., 44, pp. 1529-1535
  • Ladelfa, M.F., Toledo, M.F., Laiseca, J.E., Monte, M., Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production (2011) Antioxid. Redox. Sig., 15, pp. 1749-1761
  • Peche, L.Y., Scolz, M., Ladelfa, M.F., Monte, M., Schneider, C., MageA2 restrains cellular senescence by targeting the function of PMLIV/p53 axis at the PML-NBs (2011) Cell. Death Differ.
  • Kepkay, R., Attwood, K.M., Ziv, Y., Shiloh, Y., Dellaire, G., KAP1 depletion increases PML nuclear body number in concert with ultrastructural changes in chromatin (2011) Cell Cycle, 10, pp. 308-322
  • Ziv, Y., Bielopolski, D., Galanty, Y., Lukas, C., Taya, Y., Schultz, D.C., Lukas, J., Shiloh, Y., Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP1 dependent pathway (2006) Nat. Cell. Biol., 8, pp. 870-876
  • Cheng, S., Liu, W., Mercado, M., Ezzat, S., Asa, S.L., Expression of the melanoma-associated antigen is associated with progression of human thyroid cancer (2009) Endocr. Relat. Cancer, 16, pp. 455-466
  • Nardiello, T., Jungbluth, A.A., Mei, A., Diliberto, M., Huang, X., Dabrowski, A., Andrade, V.C., Cho, H.J., MAGE-A inhibits apoptosis in proliferating myeloma cells through repression of Bax and maintenance of survivin (2011) Clin. Cancer Res., 17, pp. 4309-4319
  • Glazer, C.A., Smith, I.M., Bhan, S., Sun, W., Chang, S.S., Pattani, K.M., Westra, W., Califano, J.A., The role of MAGEA2 in head and neck cancer (2011) Arch. Otolaryngol. Head Neck Surg., 137, pp. 286-293
  • Taniura, H., Matsumoto, K., Yoshikawa, K., Physical and functional interactions of neuronal growth suppressor necdin with p53 (1999) J. Biol. Chem., 274, pp. 16242-16248
  • Taniura, H., Taniguchi, N., Hara, M., Yoshikawa, K., NECDIN, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1 (1998) J. Biol. Chem., 273, pp. 720-728
  • Wen, C.J., Xue, B., Qin, W.X., Yu, M., Zhang, M.Y., Zhao, D.H., Gao, X., Li, C.J., HNRAGE, a human neurotrophin receptor interacting MAGE homologue, regulates p53 transcriptional activity and inhibits cell proliferation (2004) FEBS Lett., 564, pp. 171-176
  • Tian, X.X., Rai, D., Li, J., Zou, C., Bai, Y., Wazer, D., Band, V., Gao, Q., BRCA2 suppresses cell proliferation via stabilizing MAGE-D1 (2005) Cancer Res., 65, pp. 4747-4753
  • Salehi, A.H., Roux, P.P., Kubu, C.J., Zeindler, C., Bhakar, A., Tannis, L.L., Verdi, J.M., Barker, P.A., NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis (2000) Neuron, 27, pp. 279-288
  • Kendall, S.E., Battelli, C., Irwin, S., Mitchell, J.G., Glackin, C.A., Verdi, J.M., NRAGE mediates p38 activation and neural progenitor apoptosis via the bone morphogenetic protein signaling cascade (2005) Mol. Cell. Biol., 25, pp. 7711-7724
  • Di Certo, M.G., Corbi, N., Bruno, T., Iezzi, S., De Nicola, F., Desantis, A., Ciotti, M.T., Passananti, C., NRAGE associates with the anti-apoptotic factor Che-1 and regulates its degradation to induce cell death (2007) J. Cell. Sci., 120, pp. 1852-1858
  • Sakurai, T., Itoh, K., Higashitsuji, H., Nagao, T., Nonoguchi, K., Chiba, T., Fujita, J., A cleaved form of MAGE-A4 binds to Miz-1 and induces apoptosis in human cells (2004) J. Biol. Chem., 279, pp. 15505-15514
  • Nagao, T., Higashitsuji, H., Nonoguchi, K., Sakurai, T., Dawson, S., Mayer, R.J., Itoh, K., Fujita, J., MAGE-A4 interacts with the liver oncoprotein gankyrin and suppresses its tumorigenic activity (2003) J. Biol. Chem., 278, pp. 10668-10674
  • Sakurai, T., Kudo, M., Itoh, K., Ryu, U., Higashitsuji, H., Fujita, J., Adriamycin enhances proteasome-mediated generation of the proapoptotic processed form of MAGE-A4 in hepatoma cells (2011) Oncology, 81 (SUPPL. 1), pp. 30-35
  • Peikert, T., Specks, U., Farver, C., Erzurum, S.C., Comhair, S.A., Melanoma antigen A4 is expressed in non-small cell lung cancers and promotes apoptosis (2006) Cancer Res., 66, pp. 4693-4700
  • Laduron, S., Deplus, R., Zhou, S., Kholmanskikh, O., Godelaine, D., De Smet, C., Hayward, S.D., De Plaen, E., MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription (2004) Nucl. Acids Res., 32, pp. 4340-4350
  • Askew, E.B., Bai, S., Hnat, A.T., Minges, J.T., Wilson, E.M., Melanoma antigen gene protein-A11 (MAGE-11) F-box links the androgen receptor NH2-terminal transactivation domain to p160 coactivators (2009) J. Biol. Chem., 284, pp. 34793-34808
  • Bai, S., Wilson, E.M., Epidermal-growth-factor-dependent phosphorylation and ubiquitinylation of MAGE-11 regulates its interaction with the androgen receptor (2008) Mol. Cell. Biol., 28, pp. 1947-1963
  • Bai, S., He, B., Wilson, E.M., Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction (2005) Mol. Cell. Biol., 25, pp. 1238-1257
  • Mohler, J.L., Gregory, C.W., Ford, O.H., Kim, D., Weaver, C.M., Petrusz, P., Wilson, E.M., French, F.S., The androgen axis in recurrent prostate cancer (2004) Clin. Cancer Res., 10, pp. 440-448
  • Askew, E.B., Bai, S., Blackwelder, A.J., Wilson, E.M., Transcriptional synergy between melanoma antigen gene protein-A11 (MAGE-11) and p300 in androgen receptor signaling (2010) J. Biol. Chem., 285, pp. 21824-21836
  • Caballero, O.L., Zhao, Q., Rimoldi, D., Stevenson, B.J., Svobodova, S., Devalle, S., Rohrig, U.F., Simpson, A.J., Frequent MAGE mutations in human melanoma (2010) PLoS One, 5
  • Klenova, E.M., Morse, H.C., Ohlsson, R., Lobanenkov, V.V., The novel BORIS+CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer (2002) Semin. Cancer Biol., 12, pp. 399-414
  • Hong, J.A., Kang, Y., Abdullaev, Z., Flanagan, P.T., Pack, S.D., Fischette, M.R., Adnani, M.T., Schrump, D.S., Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells (2005) Cancer Res., 65, pp. 7763-7774
  • Renaud, S., Loukinov, D., Bosman, F.T., Lobanenkov, V., Benhattar, J., CTCF binds the proximal exonic region of hTERT and inhibits its transcription (2005) Nucl. Acids Res., 33, pp. 6850-6860
  • Woloszynska-Read, A., James, S.R., Song, C., Jin, B., Odunsi, K., Karpf, A.R., BORIS/CTCFL expression is insufficient for cancer-germline antigen gene expression and DNA hypomethylation in ovarian cell lines (2010) Cancer Immun., 10, p. 6
  • He, L., He, X., Lim, L.P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Hannon, G.J., A microRNA component of the p53 tumour suppressor network (2007) Nature, 447, pp. 1130-1134
  • Weeraratne, S.D., Amani, V., Neiss, A., Teider, N., Scott, D.K., Pomeroy, S.L., Cho, Y.J., MiR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma (2010) Neur. Oncol., 13, pp. 165-175
  • Yamakuchi, M., Ferlito, M., Lowenstein, C.J., MiR-34a repression of SIRT1 regulates apoptosis (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 13421-13426
  • Hermeking, H., The miR-34 family in cancer and apoptosis (2010) Cell Death Differ., 17, pp. 193-199
  • Sang, M., Wang, L., Ding, C., Zhou, X., Wang, B., Wang, L., Lian, Y., Shan, B., Melanoma-associated antigen genes - an update (2011) Cancer Lett., 302, pp. 85-90
  • Ellis, L., Pan, Y., Smyth, G.K., George, D.J., McCormack, C., Williams-Truax, R., Mita, M., Prince, H.M., Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma (2008) Clin. Cancer Res., 14, pp. 4500-4510
  • Joseph, J., Mudduluru, G., Antony, S., Vashistha, S., Ajitkumar, P., Somasundaram, K., Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB (2004) Oncogene, 23, pp. 6304-6315
  • Hoshino, I., Matsubara, H., Recent advances in histone deacetylase targeted cancer therapy (2010) Surg. Today, 40, pp. 809-815
  • Bhatia, N., Yang, B., Xiao, T.Z., Peters, N., Hoffmann, M.F., Longley, B.J., Identification of novel small molecules that inhibit protein-protein interactions between MAGE and KAP1 (2011) Arch. Biochem. Biophys., 508, pp. 217-221

Citas:

---------- APA ----------
Ladelfa, M.F., Peche, L.Y., Toledo, M.F., Laiseca, J.E., Schneider, C. & Monte, M. (2012) . Tumor-specific MAGE proteins as regulators of p53 function. Cancer Letters, 325(1), 11-17.
http://dx.doi.org/10.1016/j.canlet.2012.05.031
---------- CHICAGO ----------
Ladelfa, M.F., Peche, L.Y., Toledo, M.F., Laiseca, J.E., Schneider, C., Monte, M. "Tumor-specific MAGE proteins as regulators of p53 function" . Cancer Letters 325, no. 1 (2012) : 11-17.
http://dx.doi.org/10.1016/j.canlet.2012.05.031
---------- MLA ----------
Ladelfa, M.F., Peche, L.Y., Toledo, M.F., Laiseca, J.E., Schneider, C., Monte, M. "Tumor-specific MAGE proteins as regulators of p53 function" . Cancer Letters, vol. 325, no. 1, 2012, pp. 11-17.
http://dx.doi.org/10.1016/j.canlet.2012.05.031
---------- VANCOUVER ----------
Ladelfa, M.F., Peche, L.Y., Toledo, M.F., Laiseca, J.E., Schneider, C., Monte, M. Tumor-specific MAGE proteins as regulators of p53 function. Cancer Lett. 2012;325(1):11-17.
http://dx.doi.org/10.1016/j.canlet.2012.05.031