Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This paper reports on studies that evaluate the interaction between δ-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) and adriamycin (ADM) in an animal model system. Two groups of mice bearing a transplantable mammary adenocarcinoma received ADM i.p. in a single dose of 5 mg (low dose) and 30 mg (high dose) per kg body weight. Sixteen or 40 h after administration of the drug, mice were sacrificed, tumours, livers and hearts were removed and porphyrins, enzyme activities and malondialdehyde content were determined. Tumour explants of ADM-treated mice were incubated with ALA and irradiated with an He-Ne laser. Re-implantation of these in vitro PDT-treated explants into test animals showed that inhibition of tumour growth was significantly enhanced by combined treatment when the low dose of ADM was used. There were no significant changes in porphyrin content, ALA dehydratase and porphobilinogenase activities in the tissues analyzed after ADM treatment as compared with control values. ADM toxicity is thought to be related to semiquinone free radical formation with subsequent generation of reactive oxygen species such as peroxide and hydroxyl radical. These species are considered to initiate lipid peroxidation (LPO) and cause DNA damage. In the case of low-dose treatment with ADM a significant increase in the LPO product, malondialdehyde, was observed after PDT whereas with the high-dose regimen no changes were observed. In the case of explants of (non-irradiated) cardiac tissue malondialdehyde production was also found to be dependent on the dose and time of administration of adriamycin. In our in vivo/in vitro model system we have shown that pre-treatment with ADM increased the cytotoxicity of ALA-PDT at a dosage level of ADM which did not raise LPO levels in heart tissue. The mechanism of this effect has not been clearly elucidated but our data suggest that the observed enhancement of PDT may be attributed in part to the weakening of cellular defence mechanisms by the pre-treatment involving free radical generation by ADM.

Registro:

Documento: Artículo
Título:Enhancement of aminolevulinic acid based photodynamic therapy by adriamycin
Autor:Casas, A.; Fukuda, H.; Riley, P.; Del C. Batlle, A.M.
Filiación:Ctro. Invest. Sobre Porfirinas Y P., Cd. Univ., Pabellon II, 2do P., Buenos Aires, Argentina
Department of Molecular Pathology, Univ. Coll. London Med. Sch., D., London, United Kingdom
Palabras clave:δ-aminolevulinic acid; Adriamycin; Antitumour drugs; Combination therapy; Photodynamic therapy; aminolevulinic acid; dna; doxorubicin; free radical; hydroxyl radical; malonaldehyde; peroxide; porphobilinogen synthase; porphyrin; reactive oxygen metabolite; semiquinone; animal experiment; animal model; animal tissue; article; breast adenocarcinoma; cancer inhibition; cancer transplantation; controlled study; cytotoxicity; dna damage; drug mechanism; drug toxicity; enzyme activity; heart; intraperitoneal drug administration; laser; lipid peroxidation; liver; male; mouse; nonhuman; photodynamic therapy; priority journal; Adenocarcinoma; Aminolevulinic Acid; Ammonia-Lyases; Animals; Doxorubicin; Drug Therapy, Combination; Lipid Peroxidation; Liver; Male; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Myocardium; Neoplasm Transplantation; Photochemotherapy; Porphobilinogen Synthase; Porphyrins; Animalia
Año:1997
Volumen:121
Número:1
Página de inicio:105
Página de fin:113
DOI: http://dx.doi.org/10.1016/S0304-3835(97)00338-8
Título revista:Cancer Letters
Título revista abreviado:CANCER LETT.
ISSN:03043835
CODEN:CALED
CAS:DNA, 9007-49-2; aminolevulinic acid, 106-60-5; doxorubicin, 23214-92-8, 25316-40-9; hydroxyl radical, 3352-57-6; malonaldehyde, 542-78-9; peroxide, 14915-07-2; porphobilinogen synthase, 9036-37-7; porphyrin, 24869-67-8; semiquinone, 60766-01-0; Aminolevulinic Acid, 106-60-5; Ammonia-Lyases, 4.3.1.-; Doxorubicin, 23214-92-8; Porphobilinogen Synthase, 4.2.1.24; Porphyrins; porphobilinogenase, 5.-
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043835_v121_n1_p105_Casas

Referencias:

  • Andreoni, A., Colasanti, A., Malatesta, V., Roberti, G., Phototoxicity of anthracyclines upon laser excitation in their long-wavelength absorption bands (1991) Radiat. Res, 127, pp. 24-29
  • Baas, P., Van Geel, I., Oppelaar, H., Meyer, M., Beynen, J., Van Zandwijk, N., Stewart, F., Enhancement of photodynamic therapy by mitomycin C: A preclinical and clinical study (1996) Br. J. Cancer, 73, pp. 945-951
  • Batlle, A., Ferramola, A., Grinstein, M., Purification and general properties of 5-aminolevulinate dehydratase from cow liver (1967) Biochem. J., 194, pp. 244-249
  • Batlle, A., Wider, E., Stella, A., A simple method for measuring erythrocyte porphobilinogenase and its use in the diagnosis of acute intermittent porphyria (1978) Int. J. Biochem., 9, pp. 871-875
  • Berns, M., Coffey, J., Wile, A., Laser photoradiation therapy of cancer: Possible role of hyperthermia (1984) Lasers Surg. Med., 4, pp. 65-71
  • Cantacuzino, I., Ionescu-Mihaiesti, C., Studies of the effects of associated photodynamic therapy and drugs on macromolecular synthesis of tumoral cells grown in vitro (1990) Arch. Roum. Path. Exp. Microbiol., 49, pp. 155-175
  • Carmichael, A., Riesz, P., Photoinduced reactions of anthraquinone antitumor agents with peptides and nucleic acid bases: An electron spin resonance and spin trapping study (1985) Arch. Biochem. Biophys., 237, pp. 433-444
  • Casas, A., Fukuda, H., Batlle, A., Potentiation of the 5-aminolevulinic acid-based photodynamic therapy with cyclophosphamide (1997) Cancer Biochem. Biophys., 16. , (in press)
  • Casas, A., Fukuda, H., Batlle, A., Metabolic changes driven by cyclophosphamide treatment in mice (1997) Cell Mol. Biol., 43, pp. 95-101
  • Cohen, R., Nahabedian, M., Terem, T., Glenn, D., Contino, M., Berns, M., Wile, A., Potentiation of laser photoradiation therapy by chemotherapy (1985) Curr. Surg., 42, pp. 379-381
  • Cowled, P.A., MacKenzie, L., Forbes, I.J., Pharmacological modulation of photodynamic therapy with hematoporphyrin derivative and light (1987) Cancer Res., 47, pp. 971-974
  • Creekmore, S., Zaharko, D., Modification of chemotherapeutic effects on L1210 cells using hematoporphyrin and light (1983) Cancer Res., 43, pp. 5252-5257
  • Daugherty, J., Hixon, S., Yielding, K., Direct in vitro photoaffinity labelling of DNA with daunorubicin, adriamycin and rubidazone (1979) Biochim. Biophys. Acta, 565, pp. 13-21
  • Diamond, I., Granelli, S., McDonagh, A., Nielsen, S., Wilson, C., Jaenicke, R., Photodynamic therapy of malignant tumors (1972) Lancet, 2, pp. 1175-1177
  • Dimarco, A., Adriamycin (NSC 123127): Mode and mechanism of action (1975) Cancer Chemother. Rep., 6, pp. 91-106
  • Dougherty, T., Grindey, G., Fiel, R., Weishaupt, K., Boyle, D., Photoradiation therapy II: Cure of animal tumors with hematoporphyrin and light (1975) J. Natl. Cancer Inst., 55, pp. 115-121
  • Dougherty, T., Potter, W., Bellnier, D., Photodynamic therapy for the treatment of cancer: current status and advances (1990) Photodynamic Therapy of Neoplastic Disease, pp. 1-19. , in: D. Kessel (Ed.), CRC Press, Boca Raton, FL
  • Evensen, J., Malik, Z., Moan, J., Ultrastructural changes in the nuclei of human carcinoma cells after photodynamic treatment with hematoporphyrin derivative with tetrasodium-meso-tetra(4-sulphonatophenyl) porphine (1988) Lasers Med. Sci., 3, pp. 195-206
  • Falk, J., Porphyrins and metalloporphyrins (1964) In: Biochim. Biophys. Acta - Library, 2. , Elsevier, Amsterdam
  • Fukuda, H., Casas, A., Chueke, F., Paredes, S., Batlle, A., Photodynamic action of endogenously synthesized porphyrins from aminolevulinic acid, using a new model for assaying the effectiveness of tumoral cell killing (1993) Int. J. Biochem., 25, pp. 1395-1398
  • Gibbs, P., Gore, M., Jordan, P., Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolaevulinate dehydratase (1985) Biochem. J., 225, pp. 573-850
  • Goodman, J., Hochestein, P., Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin (1984) Biochem. Biophys. Res. Commun., 77, pp. 799-803
  • Goormaghtigh, E., Chatelain, P., Caspers, J., Ruysschaert, J., Evidence of a specific complex between adriamycin and negatively charged phospholipids (1980) Biochim. Biophys. Acta, 597, pp. 1-14
  • Grant, W., Speight, P., MacRobert, A., Hopper, C., Bown, S., Photodynamic therapy of normal rat arteries after photosensitization using disulphonated aluminium phthalocyanine and 5-aminolaevulinic acid (1994) Br. J. Cancer, 70, pp. 72-78
  • Handa, K., Sato, S., Generation of free radicals and quinone group containing anticancer chemicals in NADPH-microsome systems as evidenced by sulfite oxidation (1975) Gann, 66, pp. 43-47
  • He, X., Sikes, R., Thomsen, S., Chung, L., Jacques, S., Photodynamic therapy with Photofrin II induces programmed cell death in carcinoma cell lines (1994) Photochem. Photobiol., 59, pp. 468-473
  • Hermes-Lima, M., Valle, V., Vercesi, A., Bechara, E., Damage to rat liver mitochondria promoted by δ-aminolevulinic acid-generated reactive oxygen species: Connections with acute intermittent porphyria and lead poisoning (1991) Biochim. Biophys. Acta, 1056, pp. 57-63
  • Jori, G., Spikes, J., Photochemistry of porphyrins (1984) Topics in Photomedicine, pp. 183-318. , in: C. Smith (Ed.), Plenum Press, New York
  • Kennedy, J., Pottier, R., Pross, G., Photodynamic therapy with endogenous protoporphyrin IX: Basic principles and present clinical experience (1990) J. Photochem. Photobiol. B., 6, pp. 143-148
  • Kriegmair, M., Baumgartner, R., Knuechel, R., Stepp, H., Hofstädter, F., Hofstetter, A., Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence (1996) J. Urol., 155, pp. 105-110
  • Llesuy, S., Arnaiz, S., Hepatotoxicity of mitoxantrone and doxorubicin (1990) Toxicology, 63, pp. 187-198
  • Lowry, O., Rosebrough, N., Farr, A., Randall, R., Protein measurement with the folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Ma, L., Moan, J., Steen, H., Iani, V., Anti-tumour activity of photodynamic therapy in combination with mitomycin C in nude mice with human colon adenocarcinoma (1995) Br. J. Cancer, 71, pp. 950-956
  • Marcillat, O., Zhang, Y., Davies, K., Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin (1989) Biochem. J., 259, pp. 181-189
  • Mauzerall, M., Granick, S., The occurrence and determination of 5-aminolevulinic acid and porphobilinogen in urine (1956) J. Biol. Chem., 219, pp. 435-437
  • Nahabedian, M.Y., Cohen, R.A., Contino, M.F., Terem, T.M., Wright, W.H., Berns, M.W., Wile, A.G., Combination cytotoxic chemotherapy with cisplatin or doxorubicin and photodynamic therapy in murine tumors (1988) J. Natl. Cancer Inst., 80, pp. 739-743
  • Niehaus, W., Samuelson, B., Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation (1968) Eur. J. Biochem., 6, pp. 126-130
  • Ohmori, T., Podack, E., Nishio, K., Takahashi, M., Miyahara, Y., Takeda, Y., Kubota, N., Salio, N., Apoptosis of lung cancer cells caused by some anticancer agents (MMC, CPT-11, ADM) is inhibited by Bcl-2 (1993) Biochem. Biophys. Res. Commun., 192, pp. 30-36
  • Petersen, C., Lu, J., Sun, Y., Peterson, C.A., Shiah, J., Straight, R., Kopecek, J., Combination chemotherapy and photodynamic therapy with N-(2Hyroxypropyl) methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice (1996) Cancer Res., 56, pp. 3980-3985
  • Pollakis, G., Goormaghtigh, E., Ruysschaert, J., Role of quinone structure in the mitochondrial damage induced by antitumor anthracyclines: Comparison of adriamycin and 5-iminodaunorubicin (1983) FEBS Lett., 155, pp. 267-272
  • Reich, S., Bachur, N., Contact dermatitis associated with adriamycin (NCS-123127) and daunorubicin (NSC-82151) (1975) Cancer Chemother. Rep., 59, pp. 677-678
  • Reilly, J., Neifeld, J., Rosenberg, S., Clinical course and management of accidental adriamycin extravassation (1977) Cancer, 40, pp. 2053-2056
  • Revis, N., Marusic, N., Glutathione peroxidase activity and selenium concentration in the hearts of doxorubicin-treated rabbits (1978) J. Mol. Cell Card., 10, pp. 945-951
  • Roberts, D., Cairnduff, F., Photodynamic therapy of skin cancer: A review (1995) Br. J. Plast. Surg., 48, pp. 360-370
  • Scolnik, A., Rubio, M., Colombo, L., Comolli, R., Caro, R., Further studies on the histamine metabolism in the M2 adenocarcinoma (1984) Biomed. Pharmacother., 38, pp. 465-467
  • Sinha, B., Binding specificity of chemically and enzymatically activated anthracycline anticancer agents to nucleic acids (1980) Chem.-Biol. Interact., 30, pp. 67-77
  • Sinha, B., Gregory, J., Role of one-electron and two-electron reduction products of adriamycin and daunomycin in deoxyribonucleic acid binding (1981) Biochem. Pharmacol., 30, pp. 2626-2630
  • Snyder, H., Verma, A., Trifiletti, R., The peripheral-type benzodiazepine receptor: A protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands (1987) FASEB J., 1, pp. 282-297
  • Tritton, T., Yee, G., The anticancer agent adriamycin can be selectively cytotoxic without entering cells (1982) Science, 217, pp. 248-250
  • Vigevani, A., Williamson, M., Doxorubicin, (1980) Analytical Profiles of Drug Substances, pp. 246-270. , in: K. Florey (Ed.), Academic Press, New York
  • Washbrook, R., Fukuda, H., Batlle, A., Riley, P., Stimulation of tetrapyrrole synthesis in mammalian epithelial cells in culture by exposure to aminolevulinic acid (1997) Br. J. Cancer, 75, pp. 381-388

Citas:

---------- APA ----------
Casas, A., Fukuda, H., Riley, P. & Del C. Batlle, A.M. (1997) . Enhancement of aminolevulinic acid based photodynamic therapy by adriamycin. Cancer Letters, 121(1), 105-113.
http://dx.doi.org/10.1016/S0304-3835(97)00338-8
---------- CHICAGO ----------
Casas, A., Fukuda, H., Riley, P., Del C. Batlle, A.M. "Enhancement of aminolevulinic acid based photodynamic therapy by adriamycin" . Cancer Letters 121, no. 1 (1997) : 105-113.
http://dx.doi.org/10.1016/S0304-3835(97)00338-8
---------- MLA ----------
Casas, A., Fukuda, H., Riley, P., Del C. Batlle, A.M. "Enhancement of aminolevulinic acid based photodynamic therapy by adriamycin" . Cancer Letters, vol. 121, no. 1, 1997, pp. 105-113.
http://dx.doi.org/10.1016/S0304-3835(97)00338-8
---------- VANCOUVER ----------
Casas, A., Fukuda, H., Riley, P., Del C. Batlle, A.M. Enhancement of aminolevulinic acid based photodynamic therapy by adriamycin. CANCER LETT. 1997;121(1):105-113.
http://dx.doi.org/10.1016/S0304-3835(97)00338-8