La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Here, we present and discuss a compartmental stochastic model for Aedes aegypti conceived as a mathematical structure able to interpolate and extrapolate (predict) biological phenomena, and direct the attention to biological matters that need experimental elucidation. The model incorporates weather information in the form of daily temperatures and rain and pays particular attention to determining factors in temperate climates. Sufficiently large rains trigger egg hatching, which in turn leads to peaks in larval densities. Hatching is inhibited by the absence of bacteria (Gillett effect), a mechanism of relevance during the winter season and in seasons with isolated rains. The model also incorporates egg hatching independent of rains. Both egg hatching and larval development depend on the availability of food, which is modeled as bacteria produced at rates that depend on the temperature. Larval mortality and pupation rates depend on the larvae to bacteria ratio. The results of the model for egg laying activity were compared with field records during a normal season and a drought. Both the model and the records indicate that the egg laying activity of Ae. aegypti is not zero during the drought and recovers quickly when normal weather is reestablished. We studied the sensitivity of the model to different sets of physiological parameters published for a few different local populations of this species, and found that there is an important sensitivity to local characteristics that will affect some predictions of the model. We emphasize that if the information is going to be used to evaluate control methods, the life cycle of the mosquito must be studied for the local strain under the local environmental conditions (including food). We showed that the adult populations produced by the model are insensitive to certain combinations of parameters and that this insensitivity is related to the variability reported for different strains obtained from closely located places. When the model is considered in a larger biological context, it indicates that some standard procedures performed to measure the life cycle of Ae. aegypti in the laboratory might have a determining influence in the results. © 2013 Elsevier B.V.


Documento: Artículo
Título:Modeling the complex hatching and development of Aedes aegypti in temperate climates
Autor:Romeo Aznar, V.; Otero, M.; De Majo, M.S.; Fischer, S.; Solari, H.G.
Filiación:Departamento de Física, FCEN-UBA, IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
Departamento de Ecología Genética y Evolución, FCEN-UBA, IEGEBA-CONICET, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
Palabras clave:Bacteria; Food; Local strains; Rain; Stochastic model; Temperature; Adult populations; Aedes aegypti; Biological matter; Biological phenomena; Control methods; Daily temperatures; Egg hatching; Environmental conditions; Field record; Larval density; Larval development; Local characteristics; Local populations; Local strains; Mathematical structure; Physiological parameters; Standard procedures; Temperate climate; Weather information; Winter seasons; Bacteria; Climatology; Drought; Food products; Rain; Stochastic models; Strain; Temperature; Physiological models; bacterium; drought; environmental conditions; food availability; hatching; inhibition; larva; mortality; mosquito; physiological response; pupation; rainfall; stochasticity; temperate environment; temperature effect; winter
Página de inicio:44
Página de fin:55
Título revista:Ecological Modelling
Título revista abreviado:Ecol. Model.


  • Barrera, R., Competition and resistance to starvation in larvae of container-inhabiting Aedes mosquitoes (1996) Ecological Entomology, 21 (1), pp. 17-127
  • Bergero, P., Ruggerio, C., Lombardo, R., Schweigmann, N., Solari, H., Dispersal of Aedes aegypti: field study in temperate areas and statistical approach (2011), Preprint available from the authors; Carbajo, A.E., Distribución espacio-temporal de Aedes aegypti (Diptera: Culicidae): su relación con el ambiente urbano y el riesgo de transmisión del virus dengue en la Ciudad de Buenos Aires (2003) Ph.D. thesis, , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, director: Susana I Curto
  • Carbajo, A.E., Curto, S.I., Schweigmann, N., Spatial distribution pattern of oviposition in the mosquito Aedes aegypti in relation to urbanization in Buenos Aires: southern fringe bionomics of an introduced vector (2006) Medical and Veterinary Entomology, 20, pp. 209-218
  • Chadee, D.D., Oviposition strategies adopted by gravid Aedes aegypti (L.) (Diptera: Culicidae) as detected by ovitraps in Trinidad, West Indies (2002-2006) (2009) Acta Tropica, 111, pp. 279-283
  • Christophers, R., (1960) Aedes aegypti (L.) the yellow fever mosquito, , Cambridge University Press, Cambridge
  • Craig, G.B., Vandehey, R.C., Hickey, W.A., Genetic variability in populations of Aedes aegypti (1961) Bulletin of the World Health Organization, 24, pp. 527-539
  • De Majo, M.S., Asociación de la temperatura y de la mortalidad invernal de los huevos con la dinámica poblacional de Aedes aegypti en Buenos Aires (2011) Master's thesis, , Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
  • Durrett, R., (2001) Essentials of Stochastic Processes, , Springer Verlag, New York
  • Dégallier, P.N., Hervé, J.P., Rosa, A.F.A.T.D., Sa, G.C., Aedes aegypti (L.): importance de sa bioécologie dans la transmission de la dengue et des autres arbobirus (1988) Bulletin de la Societe de Pathologie Exotique, 81, pp. 97-110
  • Edgerly, J.S., Marvier, M.A., To hatch or not to hatch? egg hatch response to larval density and to larval contact in a treehole mosquito (1992) Ecological Entomology, 17, pp. 28-32
  • Edgerly, J.S., Willey, M.S., Livdhal, T.P., The community ecology of Aedes egg hatching: implications for mosquito invasion (1993) Ecological Entomology, 18, pp. 123-128
  • Ellis, A.M., Garcia, A.J., Focks, D.A., Morrison, A.C., Scott, T.W., Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue transmission, and their control (2011) American Journal of Tropical Medicine and Hygiene, 85, pp. 257-264
  • Estallo, E.L., Ludueña-Almeida, F.F., Visintin, A.M., Scavuzzo, C.M., Introini, M.V., Zaidenberg, M., Almirón, W.R., Prevention of dengue outbreaks through Aedes aegypti oviposition activity forecasting method (2011) Vector-Borne and Zoonotic Diseases, 11, pp. 543-549
  • Ethier, S.N., Kurtz, T.G., (1986) Markov Processes, , John Wiley and Sons, New York
  • Feller, W., On the integro-differential equations of purely discontinuous Markoff processes (1940) Transactions of the American Mathematical Society, 48, pp. 488-515
  • Focks, D.A., Haile, D.C., Daniels, E., Keesling, D., A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation and samples of simulation results (1995) American Journal of Tropical Medicine and Hygiene, 53, pp. 489-505
  • Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., Dynamics life table model for Aedes aegypti: analysis of the literature and model development (1993) Journal of Medical Entomology, 30, pp. 1003-1018
  • Focks, D.A., Haile, D.C., Daniels, E., Mount, G.A., Dynamic life table model for Aedes aegypti: simulations results (1993) Journal of Medical Entomology, 30, pp. 1019-1029
  • García, R., Sistemas Complejos (2006), Conceptos, métodos, y fundamentación epistemológica de la investigación interdisciplinaria, Gedisa, Barcelona, Spain; Gillett, J.D., The inherited basis of variation in he hatching response of Aedes eggs (Diptera: Culicidae) (1955) Bulletin of the World Health Organization, 46, pp. 255-265
  • Gillett, J.D., Variation in the hatching-response of Aedes eggs (Diptera: Culicidae) (1955) Bulletin of the World Health Organization, 46, pp. 241-255
  • Gillett, J.D., Roman, E.A., Phillips, V., Erratic hatching in Aedes eggs: a new interpretation (1977) Proceedings of the Royal Society London B, 196, pp. 223-232
  • Grech, M.G., Ludueña-Almeida, F., Almirón, W.R., Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Argentina (2010) Journal of Vector Ecology, 35, pp. 277-285
  • Gubler, D.J., Dengue and dengue hemorrhagic fever (1998) Clinical Microbiology Review, 11, pp. 480-496
  • Hartmann, S., Models as a tool for theory construction: some strategies of preliminary physics (1995) Theories and Models in Scientific Processes: Proceedings of AFOS '94, vol. 44, pp. 49-67. , Poznarí Studies in Phylosophy and Humanities, W.E. Herfel (Ed.)
  • Kearney, M., Porter, W.P., Williams, C., Ritchie, S., Hoffmann, A.A., Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia (2009) Functional Ecology, 23, pp. 528-538
  • Kendall, D.G., An artificial realization of a simple " birth-and-death" process (1950) Journal of the Royal Statistical Society, Series B: Statistical Methodology, 12, pp. 116-119
  • Kolmogoroff, A., Über die analytischen methoden in der wahrscheinlichkeitsrechnung (1931) Mathematische Annalen, 104, pp. 415-458
  • Kurtz, T.G., Solutions of ordinary differential equations as limits of pure jump Markov processes (1970) Journal of Applied Probability, 7, pp. 49-58
  • Lakatos, I., (1978) Mathematics, Science and Epistemology, , Cambridge University Press, Cambridge, UK
  • Lande, R., Natural selection and random genetic drift in phenotypic evolution (1976) Evolution, 30, pp. 314-334
  • Lee, H.L., Jokob, H., Naznia, W.A., Vasanc, S.S., Comparative life parameters of transgenic and wild strain of Aedes aegypti in the laboratory (2009) Dengue Bulletin, 33, pp. 103-144
  • Legros, M., Magori, K., Morrison, A.C., Xu, C., Scott, T.W., Lloyd, A.L., Gould, F., Evaluation of location-specific predictions by a detailed simulation model of Aedes aegypti populations (2011) PLoS ONE, 6, pp. e22701
  • Livdahl, T.P., Edgerly, J.S., Egg hatching inhibition: field evidence for population regulation in a treehole mosquito (1987) Ecological Entomology, 12, pp. 395-399
  • Livdahl, T.P., Koenekoop, R.K., Futterweit, S.G., The complex hatching response of Aedes eggs to larval density (1984) Ecological Entomology, 9, pp. 437-442
  • Maciá, A., Differences in performance of Aedes aegypti larvae raised at different densities in tires and ovitraps under field conditions in Argentina (2006) Journal of Vector Ecology, 31, pp. 371-377
  • Maciá, A., Effects of larval crowding on development time, survival and weight at metamorphosis in Aedes aegypti (Diptera: Culicidae) (2009) Revista de la Sociedad Entomológica Argentina, 68, pp. 107-114
  • Magori, K., Legros, M., Puente, M.E., Focks, D.A., Scott, T.W., Lloyd, A.L., Gould, F., Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies (2009) PLOS Neglected Tropical Diseases, 3, pp. e508
  • Merritt, R.W., Dadd, R.H., Walker, E.D., Feeding behavior, natural food, and nutritional relationships of larval mosquitoes (1992) Annual Review of Entomology, 37, pp. 349-376
  • Micieli, M.V., Campos, R.E., Oviposition activity and seasonal pattern of a population of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) in subtropical Argentina (2003) Memorias do Instituto Oswaldo Cruz, 98, pp. 659-663
  • Moore, C.G., Whitacre, C.H., Competition in mosquitoes. 2. Production of Aedes aegypti larval growth retardant at various densities and nutritional levels (1972) Annals of the Entomological Society of America, 65, pp. 915-918
  • Morrison, A.C., Gray, K., Getis, A., Astete, H., Sihuincha, M., Focks, D., Watts, D., Scott, T.W., Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in iquitos, peru (2004) Journal of Medical Entomology, 41, pp. 1123-1142
  • Otero, M., Barmak, D.H., Dorso, C.O., Solari, H.G., Natiello, M.A., Modeling dengue outbreaks (2011) Mathematical Biosciences, 232, pp. 87-95
  • Otero, M., Schweigmann, N., Solari, H.G., A stochastic spatial dynamical model for Aedes aegypti (2008) Bulletin of Mathematical Biology, 70, pp. 1297-1325
  • Otero, M., Solari, H.G., Mathematical model of dengue disease transmission by Aedes aegypti mosquito (2010) Mathematical Biosciences, 223, pp. 32-46
  • Otero, M., Solari, H.G., Schweigmann, N., A stochastic population dynamic model for Aedes aegypti: formulation and application to a city with temperate climate (2006) Bulletin of Mathematical Biology, 68, pp. 1945-1974
  • Ponnusamy, L., Böröczky, K., Wesson, D.M., Schal, C., Apperson, C.S., Bacteria stimulate hatching of yellow fever mosquito eggs (2011) PLoS ONE, 6, pp. e24409
  • Robertson, F.W., The ecological genetics of growth in Drosophila. 1. Body size and developmental time on different diets (1960) Genetic Research, 1, pp. 288-304
  • Robertson, F.W., The ecological genetics of growth in Drosophila. 8. Adaptation to a new diet (1966) Genetic Research, 8, pp. 165-179
  • Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae) (1990) Journal of Medical Entomology, 27, pp. 892-898
  • Schweigmann, N., Orellano, P., Kuruc, J., Vera, M.T., Vezzani, D., Méndez, A., Distribución y abundancia de Aedes aegypti (Diptera: Culicidae) en la ciudad de Buenos Aires (2002) Actualizaciones en Artropodologí a Sanitaria Argentina, pp. 155-160. , Revista Sociedad Entomológica Argentina. Fundación Mundo Sano, D.S. Salomón (Ed.)
  • Seijo, A., Romer, Y., Espinosa, M., Monroig, J., Giamperetti, S., Ameri, D., Antonelli, L., Brote de dengue autóctono en el area metropolitana Buenos Aires. experiencia del Hospital de enfermedades infecciosas F. J. Muñiz (2009) Medicina, 69, pp. 593-600
  • Solari, H.G., Natiello, M.A., Stochastic population dynamics: the Poisson approximation (2003) Physical Review E, 67, p. 031918
  • Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., Studies on the life budget of Aedes aegypti in Wat Samphaya Bangkok Thailand (1972) Bulletin of the World Health Organization, 46, pp. 211-226
  • Stearns, S.C., The evolutionary significance of phenotypic plasticity (1989) BioScience, 39, pp. 436-445
  • Tejerina, E.F., Almeida, F.F.L., Almirón, W.R., Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Misiones province, northeastern Argentina (2009) Acta Tropica, 109, pp. 45-49
  • Vezzani, C., Velázquez, S.T., Schweigmann, N., Seasonal pattern of abundance of Aedes aegypti (Diptera: Culicidae) in Buenos Aires city, Argentina (2004) Memorias do Instituto Oswaldo Cruz, 99, pp. 351-356
  • Xu, C., Legros, M., Gould, F., Lloyd, A.L., Understanding uncertainties in model-based predictions of Aedes aegypti population dynamics (2010) PLOS Neglected Tropical Diseases, 4 (9), pp. e830
  • Zwietering, M.H., de Koos, J.T., Hasenack, B.E., de Witt, J.C., van't Riet, K., Modeling of bacterial growth as a function of temperature (1991) Applied and Environment Microbiology, 57, pp. 1094-1101


---------- APA ----------
Romeo Aznar, V., Otero, M., De Majo, M.S., Fischer, S. & Solari, H.G. (2013) . Modeling the complex hatching and development of Aedes aegypti in temperate climates. Ecological Modelling, 253, 44-55.
---------- CHICAGO ----------
Romeo Aznar, V., Otero, M., De Majo, M.S., Fischer, S., Solari, H.G. "Modeling the complex hatching and development of Aedes aegypti in temperate climates" . Ecological Modelling 253 (2013) : 44-55.
---------- MLA ----------
Romeo Aznar, V., Otero, M., De Majo, M.S., Fischer, S., Solari, H.G. "Modeling the complex hatching and development of Aedes aegypti in temperate climates" . Ecological Modelling, vol. 253, 2013, pp. 44-55.
---------- VANCOUVER ----------
Romeo Aznar, V., Otero, M., De Majo, M.S., Fischer, S., Solari, H.G. Modeling the complex hatching and development of Aedes aegypti in temperate climates. Ecol. Model. 2013;253:44-55.