Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The short-term biomass dynamics of periphyton communities in running water is characterized by deep variations. This temporal variability is mainly produced by changes in running water velocity. The shear force caused by the friction of water over the surface of the periphyton produces a removal of biomass and creates open sites for colonization. Running water also brings new suspended algae that can establish on open sites. An increase in the velocity of the water can also improve the renewal of nutrients in depleted areas and the elimination of waste products, producing higher reproductive rates. In this paper, we have developed a model of periphyton biomass dynamics taking the water velocity and nutrient concentration as external driving variables influencing immigration, removal and reproductive rate of the algae. We fitted the model to field data encompassing high and low water velocities and different seasons. We have qualitatively compared the parameters obtained from different situations with the expected ones based on bibliographic information. The model has shown a good fit to field data and parameters were similar to expected ones, giving evidence that the model provides a good description for the processes that dominate the periphyton dynamics in running waters.

Registro:

Documento: Artículo
Título:Modelling periphyton dynamics in running water
Autor:Saravia, L.A.; Momo, F.; Boffi Lissin, L.D.
Filiación:Becario de Perfeccionamiento CIC, Prog. de Invest. en Ecologia M., Universidad Nacional de Luján, 6700 Luján, Buenos Aires, Argentina
Prog. de Invest. en Ecologia M., Universidad Nacional de Luján, 6700 Luján, Buenos Aires, Argentina
Departmento Biología, Facultad de Cs. Exactas y Naturales, UBA. Pab. II Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Biomass dynamics; Community; Flow velocity; Lotic ecosystems; Periphyton models; Streams; biomass; community dynamics; periphyton
Año:1998
Volumen:114
Número:1
Página de inicio:35
Página de fin:47
DOI: http://dx.doi.org/10.1016/S0304-3800(98)00113-6
Título revista:Ecological Modelling
Título revista abreviado:Ecol. Model.
ISSN:03043800
CODEN:ECMOD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043800_v114_n1_p35_Saravia

Referencias:

  • Aminot, A., Dosage de la chloropyhlle et des phéopigment par spectrofhotometric (1983) Manuel des Analyses Chimiques en Milieu Marin, p. 184. , In: Aminot, A., Chausspied, M. (Eds.) Centre National pour L'Eplotation des Océans, Quebec
  • Apesteguia, C., Marta, J., Producción de biofilm en ambientes acuáticos del río Paraná Medio. II: Medición de la velocidad de producción media e instantánea (1979) Rev. Asoc. Cienc. Nat. Litoral., 10, pp. 39-48
  • Biggs, B.J.F., Algal proliferation in New Zeland's shallow, stony foothills-fed rivers: Towards a predictive model (1988) Verh. Internat. Vereing. Limnol., 23, pp. 1405-1411
  • Biggs, B.J.F., The contribution of flood disturbance, catchment geology and land use to the habitat template of periphyton in stream ecosystems (1995) Freshwat. Biol., 33, pp. 419-438
  • Biggs, B.J.F., Close, M.E., Periphyton biomass dynamics in gravel bed rivers: The relative effects of flows and nutrients (1989) Freshwat. Biol., 22, pp. 209-231
  • Biggs, B.J.F., Thomsen, H.A., Disturbance of stream periphyton by perturbations in shear stress: Time to structural failure and differences in community resistence (1995) J. Phycol., 31, pp. 233-241
  • Biggs, B.J.F., Stokseth, S., Hydraulic habitat suitability for periphyton in rivers (1996) Reg. Riv. Res. Manag., 12, pp. 251-261
  • Cattaneo, A., Legendre, P., Niyonsenga, T., Exploring periphyton unpredictability (1993) J. N. Am. Benth. Soc., 12, pp. 418-430
  • Feijoó, C.S., Momo, F.R., Bonetto, C.A., Tur, N.M., Factors influencing biomass and nutrient content of the submersed macrophyte Egeria densa Planch. in a pampasic stream (1996) Hydrobiologia, 341, pp. 21-26
  • Getz, W.M., A unified approach to multispecies modeling (1991) Nat. Res. Model., 5, pp. 393-421
  • Getz, W.M., The logistic equation revisited: Final instalment (1993) Tree, 8, pp. 68-71
  • Giorgi, A., Response of periphyton biomass to high phosphorus concentration in laboratory experiments (1995) Bull. Environ. Contam. Toxicol., 55, pp. 825-832
  • Giorgi, A., Malacalza, L., Biomass variation of microphytobenthos in plain stream (1994) Verh. Internat. Verein. Limnol., 25, pp. 1883-1887
  • Gordon, N.D., McMahon, T.A., Finalyson, B.L., (1992) Stream Hydrology: An Introduction for Ecologists, p. 526. , Brisbane: Wiley
  • Horner, R.R., Welch, E.B., Stream periphyton development in relation to current velocity and nutrients (1981) Can. J. Fish Aquat. Sci., 38, pp. 449-457
  • Horner, R.R., Welch E.B.Veenstra, R.B., Development of nuisance periphytic algae in laboratory streams in relation to enrichment and velocity (1983) Periphyton of Freshwater Ecosystems, pp. 121-134. , In: Wetzel, R.G. (Ed.) Dr W. Junk Publishers, The Hague
  • Horner, R.R., Welch, E.B., Seeley, M.R., Jacoby, J.M., Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration (1990) Fresh. Biol., 24, pp. 215-232
  • Humphrey, K.P., Stevenson, R.J., Responses of benthic algae to pulses in current and nutrients during simulation of subscouring spates (1992) J. N. Am. Benthol. Soc., 11, pp. 37-48
  • Ingber, L., Very fast simulated reannealing (1989) Math. Comput. Model., 12, pp. 967-973
  • Ingber, L., Simulated annealing: Practice versus theory (1993) J. Math. Comput. Model., 18, pp. 29-57
  • Lau, Y.L., Liu, D., Effect of flow rate on biofilm accumulation in open channels (1993) Wat. Res., 27, pp. 335-360
  • May, R.M., Conway, G.R., Hassell, M.P., Southwood, T.R.E., Time delays, density-dependence and single species oscillations (1975) J. Anim. Ecol., 43, pp. 747-770
  • McCormick, P.V., Stevenson, R.J., Mechanisms of benthic algal succession in lotic environments (1991) Ecology, 72, pp. 1835-1848
  • McIntire, C.D., Physiological ecological studies on benthic algae in laboratory streams (1968) J. Water Pollut. Control Fed., 40, pp. 1940-1952
  • McIntire, C.D., Periphyton dynamics in laboratory streams: A simulation model and its implications (1973) Ecol. Mon., 43, pp. 399-420
  • (1994) Microsoft Excel 4.0 User's Guide, 2, p. 353. , Microsoft Corporation
  • Momo, F.R., A new model for periphyton growth in running waters (1995) Hydrobiologia, 299, pp. 215-218
  • Morin, A., Cattaneo, A., Factors affecting sampling variability of freshwater periphyton and the power of periphyton studies (1992) Can. J. Fish Aquat. Sci., 49, pp. 1695-1703
  • Mulholland, P.J., Marzolf, E.R., Hendricks, S.P., Wilkerson, R.V., Baybayan, A.K., Longitudinal patterns of nutrient cycling and periphyton characteristics in streams: A test of upstream-downstream linkage (1995) J. N. Am. Benthol. Soc., 14, pp. 357-370
  • Pascual, M.A., Kareiva, P., Predicting the outcome of competition using experimental data: Maximun likelihood and bayesian approaches (1996) Ecology, 77, pp. 337-349
  • Reiter, M.A., Interactions between the hydrodynamics of flowing water and the development of a benthic algal community (1986) J. Fresh. Ecol., 3, pp. 511-517
  • Riber, H.H., Wetzel, R.G., Boundary layer and internal diffusion effects on phosphorus fluxes in lake periphyton (1987) Limnol. Oceanogr., 32, pp. 1181-1194
  • Silvester, N.R., Sleigh, M.A., The forces on microorganisms at surfaces in flowing water (1985) Fresh. Biol., 15, pp. 433-448
  • Stevenson, R.J., Effects of currents and conditions simulating autogenically changing microhabitats on benthic diatom immigration (1983) Ecology, 64, pp. 1514-1524
  • Stevenson, R.J., Mathematical modeling of epilithic diatom accumulation (1986) Proceedings of the Eighth Diatom Symposium, pp. 323-335. , M. Ricard. Koenigstein: Koeltz Scientific Books
  • Stevenson, R.J., Christopher, P.G., Kirschtel, D.B., King, C.C., Tuchman, N.C., Density dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams (1991) J. Phycol., 27, pp. 59-69
  • Stewart, P.S., A model of biofilm detachment (1993) Biotech. Bioeng., 41, pp. 111-117
  • Szathmary, E., Simple growth laws and selection consequences (1991) Trend. Ecol. Evol., 6, pp. 366-370
  • Taylor, A.D., Deterministic stability analysis can predict the dynamics of some stochastic population models (1992) J. Anim. Ecol., 61, pp. 241-248
  • Whitford, L.A., The current effect and growth of freshwater algae (1960) Trans. Am. Micro. Soc., 79, pp. 302-309

Citas:

---------- APA ----------
Saravia, L.A., Momo, F. & Boffi Lissin, L.D. (1998) . Modelling periphyton dynamics in running water. Ecological Modelling, 114(1), 35-47.
http://dx.doi.org/10.1016/S0304-3800(98)00113-6
---------- CHICAGO ----------
Saravia, L.A., Momo, F., Boffi Lissin, L.D. "Modelling periphyton dynamics in running water" . Ecological Modelling 114, no. 1 (1998) : 35-47.
http://dx.doi.org/10.1016/S0304-3800(98)00113-6
---------- MLA ----------
Saravia, L.A., Momo, F., Boffi Lissin, L.D. "Modelling periphyton dynamics in running water" . Ecological Modelling, vol. 114, no. 1, 1998, pp. 35-47.
http://dx.doi.org/10.1016/S0304-3800(98)00113-6
---------- VANCOUVER ----------
Saravia, L.A., Momo, F., Boffi Lissin, L.D. Modelling periphyton dynamics in running water. Ecol. Model. 1998;114(1):35-47.
http://dx.doi.org/10.1016/S0304-3800(98)00113-6