Artículo

Ubalde, S.; Liu, Z.; Mejail, M.; Hancock E.; Bayro-Corrochano E. "Detecting subtle human-object interactions using kinect" (2014) 19th Iberoamerican Congress on Pattern Recognition, CIARP 2014. 8827:770-777
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte la política de Acceso Abierto del editor

Abstract:

We present a method to identify human-object interactions involved in complex, fine-grained activities. Our approach benefits from recent improvements in range sensor technology and body trackers to detect and classify important events in a depth video. Combining global motion information with local video analysis, our method is able to recognize the time instants of a video at which a person picks up or puts down an object. We introduce three novel datasets for evaluation and perform extensive experiments with promising results. © Springer International Publishing Switzerland 2014.

Registro:

Documento: Artículo
Título:Detecting subtle human-object interactions using kinect
Autor:Ubalde, S.; Liu, Z.; Mejail, M.; Hancock E.; Bayro-Corrochano E.
Filiación:Departamento de Computación, Universidad de Buenos Aires, Buenos Aires, Argentina
Microsoft Research, Redmond, United States
Palabras clave:Depth sensor; Human-object interaction; Trajectory analysis; Computer vision; Depth sensors; Depth videos; Fine grained; Global motion; Human-object interaction; Range sensors; Trajectory analysis; Video analysis; Pattern recognition
Año:2014
Volumen:8827
Página de inicio:770
Página de fin:777
Título revista:19th Iberoamerican Congress on Pattern Recognition, CIARP 2014
Título revista abreviado:Lect. Notes Comput. Sci.
ISSN:03029743
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v8827_n_p770_Ubalde

Referencias:

  • Oreifej, O., Liu, Z., Hon4d: Histogram of oriented 4D normals for activity recognition from depth sequences (2013) CVPR 2013, pp. 716-723
  • Wang, J., Liu, Z., Wu, Y., Yuan, J., Mining actionlet ensemble for action recognition with depth cameras (2012) CVPR 2012, pp. 1290-1297
  • Vieira, A., Nascimento, E., Oliveira, G., Liu, Z., Campos, M., Stop: Space-time occupancy patterns for 3D action recognition from depth map sequences (2012) CIARP 2012. LNCS, 7441, pp. 252-259. , Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.),,. Springer, Heidelberg
  • Li, W., Zhang, Z., Liu, Z., Action recognition based on a bag of 3D points (2010) CVPR4HB 2010, pp. 9-14
  • Sung, J., Ponce, C., Selman, B., Saxena, A., Human activity detection from RGBD images (2011) AAAI workshop on Pattern, , Activity and Intent Recognition, PAIR
  • Mehrotra, S., Zhang, Z., Cai, Q., Zhang, C., Chou, P.A., Low-complexity, nearlossless coding of depth maps from kinect-like depth cameras (2011) MMSP, pp. 1-6. , IEEE
  • Camplani, M., Salgado, L., Efficient spatio-temporal hole filling strategy for Kinect depth maps (2012) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 8290. , (February, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
  • Gupta, A., Davis, L., Objects in action: An approach for combining action understanding and object perception (2007) CVPR 2007, pp. 1-8
  • Gupta, A., Kembhavi, A., Davis, L., Observing human-object interactions: Using spatial and functional compatibility for recognition (2009) PAMI, 31, pp. 1775-1789
  • Packer, B., Saenko, K., Koller, D., A combined pose, object, and feature model for action understanding (2012) 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1378-1385. , (June
  • Datasets, , http://www-2.dc.uba.ar/grupinv/imagenes/subalde/
  • Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R., Real-time human pose recognition in parts from single depth images (2013) CACM, 56, pp. 116-124. , (January
  • Perona, P., Malik, J., Scale space and edge detection using anisotropic diffusion (1987) CVWS 1987, pp. 16-22
  • Rao, C., Yilmaz, A., Shah, M., View-invariant representation and recognition of actions (2002) IJCV, 50, pp. 203-226. , (NovemberA4 - Chilean Association for Pattern Recognition (AChiRP); CINVESTAV, Campus Guadalajara; Cuban Association for Pattern Recognition (ACRP); INTEL Education; International Association for Pattern Recognition (IAPR); Mexican Association for Computer Vision; Neurocomputing and Robotics (MACVNR); Portuguese Association for Pattern Recognition (APRP); Spanish Association for Pattern Recogntion and Image Analysis (AERFAI); Special Interest Group of the Brazilian Computer Society (SIGPR-SBC)

Citas:

---------- APA ----------
Ubalde, S., Liu, Z., Mejail, M., Hancock E. & Bayro-Corrochano E. (2014) . Detecting subtle human-object interactions using kinect. 19th Iberoamerican Congress on Pattern Recognition, CIARP 2014, 8827, 770-777.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v8827_n_p770_Ubalde [ ]
---------- CHICAGO ----------
Ubalde, S., Liu, Z., Mejail, M., Hancock E., Bayro-Corrochano E. "Detecting subtle human-object interactions using kinect" . 19th Iberoamerican Congress on Pattern Recognition, CIARP 2014 8827 (2014) : 770-777.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v8827_n_p770_Ubalde [ ]
---------- MLA ----------
Ubalde, S., Liu, Z., Mejail, M., Hancock E., Bayro-Corrochano E. "Detecting subtle human-object interactions using kinect" . 19th Iberoamerican Congress on Pattern Recognition, CIARP 2014, vol. 8827, 2014, pp. 770-777.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v8827_n_p770_Ubalde [ ]
---------- VANCOUVER ----------
Ubalde, S., Liu, Z., Mejail, M., Hancock E., Bayro-Corrochano E. Detecting subtle human-object interactions using kinect. Lect. Notes Comput. Sci. 2014;8827:770-777.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v8827_n_p770_Ubalde [ ]