Abstract:
A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = χ (G),..., χb(G) and b-monotonic if χb (H1) ≥ χb (H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: 1. We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. 2. We prove that it is NP-complete to decide whether the b-chromatic number of a co-bipartite graph is at most a given threshold. 3. We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. 4. Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic. © 2014 Springer International Publishing.
Registro:
Documento: |
Artículo
|
Título: | b-Coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs |
Autor: | Bonomo, F.; Schaudt, O.; Stein, M.; Valencia-Pabon, M.; Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE |
Ciudad: | Lisbon |
Filiación: | Dep. de Computación, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina Institut de Mathématiques de Jussieu, CNRS UMR7586, Université Pierre et Marie Curie (Paris 6), Paris, France Centro de Mod. Mat., Universidad de Chile, Santiago, Chile Université Paris 13, Sorbonne Paris Cité, CNRS UMR7030, Villetaneuse, France
|
Palabras clave: | Color; Coloring; Combinatorial optimization; Dynamic programming; Forestry; Polynomial approximation; Augmenting path; B-chromatic number; Bipartite graphs; Induced subgraphs; Polynomial-time dynamic programming; Proper coloring; Stability number; Triangle-free graphs; Trees (mathematics); Color; Coloring; Forestry; Mathematics; Trees |
Año: | 2014
|
Volumen: | 8596 LNCS
|
Página de inicio: | 100
|
Página de fin: | 111
|
DOI: |
http://dx.doi.org/10.1007/978-3-319-09174-7_9 |
Título revista: | 3rd International Symposium on Combinatorial Optimization, ISCO 2014
|
Título revista abreviado: | Lect. Notes Comput. Sci.
|
ISSN: | 03029743
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v8596LNCS_n_p100_Bonomo |
Referencias:
- Berge, C., Two theorems in graph theory (1957) Proc. Natl. Acad. Sci. U.S.A., 43, pp. 842-844
- Bodlaender, H.L., Achromatic number is NP-complete for cographs and interval graphs (1989) Inf. Process. Lett., 31, pp. 135-138
- Bonomo, F., Durán, G., Maffray, F., Marenco, J., Valencia-Pabon, M., On the b-coloring of cographs and P4-sparse graphs (2009) Graphs Comb., 25 (2), pp. 153-167
- Dantzig, G.B., Discrete-variable extremum problems (1957) Oper. Res., 5, pp. 266-277
- Edmonds, J., Paths, trees and flowers (1965) Can. J. Math., 17, pp. 449-467
- Faik, T., (2005) La B-continuité des B-colorations: Complexité, Propriétés Structurelles et Algorithmes, , Ph.D. thesis, L.R.I., Université Paris-Sud, Orsay, France
- Harary, F., Hedetniemi, S., The achromatic number of a graph (1970) J. Comb. Theor., 8, pp. 154-161
- Havet, F., Linhares-Sales, C., Sampaio, L., b-coloring of tight graphs (2012) Discrete Appl. Math., 160 (18), pp. 2709-2715
- Hoàng, C.T., Kouider, M., On the b-dominating coloring of graphs (2005) Discrete Appl. Math., 152, pp. 176-186
- Hoàng, C.T., Linhares Sales, C., Maffray, F., On minimally b-imperfect graphs (2009) Discrete Appl. Math., 157 (17), pp. 3519-3530
- Irving, R.W., Manlove, D.F., The b-chromatic number of a graph (1999) Discrete Appl. Math., 91, pp. 127-141
- Kára, J., Kratochvíl, J., Voigt, M., (2004) b-continuity, , Technical report M 14/04, Technical University Ilmenau, Faculty of Mathematics and Natural Sciences
- Kratochvíl, J., Tuza, Z., Voigt, M., On the b-Chromatic number of graphs (2002) LNCS, 2573, pp. 310-320. , Kučera, L. (ed.) WG 2002. Springer, Heidelberg
- Tinhofer, G., Strong tree-cographs are Birkoff graphs (1989) Discrete Appl. Math., 22 (3), pp. 275-288
- Yannakakis, M., Gavril, F., Edge dominating sets in graphs (1980) SIAM J. Appl. Math., 38 (3), pp. 364-372A4 - Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE
Citas:
---------- APA ----------
Bonomo, F., Schaudt, O., Stein, M., Valencia-Pabon, M. & Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE
(2014)
. b-Coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs. 3rd International Symposium on Combinatorial Optimization, ISCO 2014, 8596 LNCS, 100-111.
http://dx.doi.org/10.1007/978-3-319-09174-7_9---------- CHICAGO ----------
Bonomo, F., Schaudt, O., Stein, M., Valencia-Pabon, M., Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE
"b-Coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs"
. 3rd International Symposium on Combinatorial Optimization, ISCO 2014 8596 LNCS
(2014) : 100-111.
http://dx.doi.org/10.1007/978-3-319-09174-7_9---------- MLA ----------
Bonomo, F., Schaudt, O., Stein, M., Valencia-Pabon, M., Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE
"b-Coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs"
. 3rd International Symposium on Combinatorial Optimization, ISCO 2014, vol. 8596 LNCS, 2014, pp. 100-111.
http://dx.doi.org/10.1007/978-3-319-09174-7_9---------- VANCOUVER ----------
Bonomo, F., Schaudt, O., Stein, M., Valencia-Pabon, M., Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE b-Coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs. Lect. Notes Comput. Sci. 2014;8596 LNCS:100-111.
http://dx.doi.org/10.1007/978-3-319-09174-7_9