Artículo

Rodríguez, J.M.; Gómez Fernández, F.; Buemi, M.E.; Jacobo-Berlles, J. "Dynamic textures segmentation with GPU" (2012) 17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012. 7441 LNCS:607-614
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This work addresses the problem of motion segmentation in video sequences using dynamic textures. Motion can be globally modeled as a statistical visual process know as dynamic texture. Specifically, we use the mixtures of dynamic textures model which can simultaneously handle different visual processes. Nowadays, GPU are becoming increasingly popular in computer vision applications because of their cost-benefit ratio. However, GPU programming is not a trivial task and not all algorithms can be easily switched to GPU. In this paper, we made two implementations of a known motion segmentation algorithm based on mixtures of dynamic textures. One using CPU and the other ported to GPU. The performance analyses show the scenarios for which it is worthwhile to do the full GPU implementation of the motion segmentation process. © 2012 Springer-Verlag.

Registro:

Documento: Artículo
Título:Dynamic textures segmentation with GPU
Autor:Rodríguez, J.M.; Gómez Fernández, F.; Buemi, M.E.; Jacobo-Berlles, J.
Ciudad:Buenos Aires
Filiación:Departamento de Computación, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Computer vision applications; Cost benefit ratio; Dynamic textures; GPU implementation; GPU programming; Motion segmentation; Performance analysis; Video sequences; Visual process; Computer vision; Image analysis; Textures
Año:2012
Volumen:7441 LNCS
Página de inicio:607
Página de fin:614
DOI: http://dx.doi.org/10.1007/978-3-642-33275-3_75
Título revista:17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012
Título revista abreviado:Lect. Notes Comput. Sci.
ISSN:03029743
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v7441LNCS_n_p607_Rodriguez

Referencias:

  • Horn, B.K.P., Schunck, B.G., Determining optical flow (1981) Artificial Intelligence, 17 (1-3), pp. 185-203
  • Lucas, B.D., Kanade, T., An iterative image registration technique with an application to stereo vision (1981) IJCAI 1981, pp. 674-679
  • Doretto, G., Dynamic Textures: Modeling, Learning, Synthesis, Animation, Segmentation, and Recognition, , Thesis (Ph.D.)-University of California, Los Angeles
  • Chan, A.B., Vasconcelos, N., Modeling, clustering, and segmenting video with mixtures of dynamic textures (2008) PAMI, 30. , May
  • Chan, A.B., Vasconcelos, N., Variational layered dynamic textures (2009) CVPR, pp. 1062-1069. , June
  • Roweis, S., Ghahramani, Z., A unifying review of linear Gaussian models (1999) Neural Comput., 11 (2), pp. 305-345
  • Dempster, A.P., Laird, N.M., Rubin, D.B., Maximum Likelihood from Incomplete Data via the EM Algorithm (1977) J. Roy. Statist. Soc. Ser. B, Meth., 39 (1), pp. 1-38
  • Chan, A., (2009) Synthetic Dynamic Texture Segmentation Database, , http://www.svcl.ucsd.edu/projects/motiondytex/db/dytex_synthdb.zip, July
  • Hubert, L., Arabie, P., (1985) Comparing Partitions
  • Huang, M.-Y., Wei, S.-C., Huang, B., Chang, Y.-L., Accelerating the Kalman Filter on a GPU (2011) ICPADS
  • Bouckaert, R., Matrix Inverse with Cuda and CUBLAS, , http://www.cs.waikato.ac.nz/~remco/
  • Ltaief, H., Tomov, S., Nath, R., Du, P., Dongarra, J., A Scalable High Performant Cholesky Factorization for Multicore with GPU Accelerators (2011) LNCS, 6449, pp. 93-101. , Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010. Springer, Heidelberg
  • (2012) Cuda Cublas Library, , NVIDIA, Version 4.1 January
  • Chan, A.B., Vasconcelos, N., Layered Dynamic Textures (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, pp. 1862-1879

Citas:

---------- APA ----------
Rodríguez, J.M., Gómez Fernández, F., Buemi, M.E. & Jacobo-Berlles, J. (2012) . Dynamic textures segmentation with GPU. 17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012, 7441 LNCS, 607-614.
http://dx.doi.org/10.1007/978-3-642-33275-3_75
---------- CHICAGO ----------
Rodríguez, J.M., Gómez Fernández, F., Buemi, M.E., Jacobo-Berlles, J. "Dynamic textures segmentation with GPU" . 17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012 7441 LNCS (2012) : 607-614.
http://dx.doi.org/10.1007/978-3-642-33275-3_75
---------- MLA ----------
Rodríguez, J.M., Gómez Fernández, F., Buemi, M.E., Jacobo-Berlles, J. "Dynamic textures segmentation with GPU" . 17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012, vol. 7441 LNCS, 2012, pp. 607-614.
http://dx.doi.org/10.1007/978-3-642-33275-3_75
---------- VANCOUVER ----------
Rodríguez, J.M., Gómez Fernández, F., Buemi, M.E., Jacobo-Berlles, J. Dynamic textures segmentation with GPU. Lect. Notes Comput. Sci. 2012;7441 LNCS:607-614.
http://dx.doi.org/10.1007/978-3-642-33275-3_75