Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Text information in images and videos is frequently a key factor for information indexing and retrieval systems. However, text detection in images is a difficult task since it is often embedded in complex backgrounds. In this paper, we propose an accurate text detection and localization method in images based on stroke information and the Adaptive Run Lenght Smoothing Algorithm. Experimental results show that the proposed approach is accurate, has high recall and is robust to various text sizes, fonts, colors and languages. © 2011 Springer-Verlag.

Registro:

Documento: Artículo
Título:Using adaptive run length smoothing algorithm for accurate text localization in images
Autor:Rais, M.; Goussies, N.A.; Mejail, M.
Ciudad:Pucon
Filiación:Departamento de Computación, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Complex background; Information indexing; Key factors; Run length smoothing algorithms; Smoothing algorithms; Text detection; Text information; Text localization; Algorithms; Computer vision; Information retrieval; Pattern recognition systems; Search engines; Character recognition
Año:2011
Volumen:7042 LNCS
Página de inicio:149
Página de fin:156
DOI: http://dx.doi.org/10.1007/978-3-642-25085-9_17
Título revista:16th Iberoamerican Congress on Pattern Recognition, CIARP 2011
Título revista abreviado:Lect. Notes Comput. Sci.
ISSN:03029743
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_03029743_v7042LNCS_n_p149_Rais.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v7042LNCS_n_p149_Rais

Referencias:

  • Anthimopoulos, M., Gatos, B., Pratikakis, I., A two-stage scheme for text detection in video images (2010) Image Vision Comput., 28, pp. 1413-1426
  • Cortes, C., Vapnik, V., Support-vector networks (1995) Machine Learning, 20 (3), pp. 273-297
  • Herv, D., Chen, D., Bourlard, H., Text Identification in Complex Background Using SVM (2001) Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2, pp. 621-626
  • Hua, X., Wenyin, L., Zhang, H., An Automatic Performance Evaluation Protocol for Video Text Detection Algorithms (2004) IEEE Transactions on Circuits and Systems for Video Technology, 14, pp. 498-507
  • Jung, K., Text information extraction in images and video: A survey (2004) Pattern Recognition, 37 (5), pp. 977-997
  • Li, J., (2003) A Wavelet Approach to Edge Detection, , Master's thesis, Sam Houston State University, Huntsville, Texas August
  • Li, X., Wang, W., Jiang, S., Huang, Q., Gao, W., Fast and Effective Text Detection (2008) International Congress in Image Processing 2008
  • Liu, Q., Jung, C., Kim, S., Moon, Y., Kim, J., (2006) Stroke Filter for Text Localization in Video Images, pp. 1473-1476. , October
  • Lyu, M.R., Song, J., Cai, M., A comprehensive method for multilingual video text detection, localization, and extraction (2005) IEEE Transactions on Circuits and Systems for Video Technology, 15 (2), pp. 243-255
  • Nikolaou, N., Makridis, M., Gatos, B., Stamatopoulos, N., Papamarkos, N., Segmentation of historical machine-printed documents using Adaptive Run Length Smoothing and skeleton segmentation paths (2010) Image Vision Comput., 28, pp. 590-604
  • Shivakumara, P., Phan, T.Q., Tan, C.L., (2009) A Gradient Difference Based Technique for Video Text Detection, pp. 156-160
  • Ye, Q., Huang, Q., Gao, W., Zhao, D., Fast and robust text detection in images and video frames (2005) Image and Vision Computing, 23 (6), pp. 565-576
  • Zhao, M., Li, S., Kwok, J., Text detection in images using sparse representation with discriminative dictionaries (2010) Image and Vision Computing, 28 (12), pp. 1590-1599
  • Zhong, Y., Karu, K., Jain, A.K., Locating text in complex color images (1995) Proceedings of the Third International Conference on Document Analysis and Recognition, ICDAR 1995, 1. , IEEE Computer Society, Washington, DC, USAA4 - Universidad de La Frontera (UFRO); The International Association for Pattern Recognition (IAPR); Asociacon Chilena de Reconocimiento de Patrones (AChiRP); Asociacion Cubana de Reconocimiento de Patrones (ACPR); Mex. Assoc. Comput. Vis., Neural Comput. Rob. (MACVNR)

Citas:

---------- APA ----------
Rais, M., Goussies, N.A. & Mejail, M. (2011) . Using adaptive run length smoothing algorithm for accurate text localization in images. 16th Iberoamerican Congress on Pattern Recognition, CIARP 2011, 7042 LNCS, 149-156.
http://dx.doi.org/10.1007/978-3-642-25085-9_17
---------- CHICAGO ----------
Rais, M., Goussies, N.A., Mejail, M. "Using adaptive run length smoothing algorithm for accurate text localization in images" . 16th Iberoamerican Congress on Pattern Recognition, CIARP 2011 7042 LNCS (2011) : 149-156.
http://dx.doi.org/10.1007/978-3-642-25085-9_17
---------- MLA ----------
Rais, M., Goussies, N.A., Mejail, M. "Using adaptive run length smoothing algorithm for accurate text localization in images" . 16th Iberoamerican Congress on Pattern Recognition, CIARP 2011, vol. 7042 LNCS, 2011, pp. 149-156.
http://dx.doi.org/10.1007/978-3-642-25085-9_17
---------- VANCOUVER ----------
Rais, M., Goussies, N.A., Mejail, M. Using adaptive run length smoothing algorithm for accurate text localization in images. Lect. Notes Comput. Sci. 2011;7042 LNCS:149-156.
http://dx.doi.org/10.1007/978-3-642-25085-9_17