Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We relate different properties of nonseparable quincunx multiwavelet systems, such as polynomial approximation order, orthonormality and balancing, to conditions on the matrix filters. We give mathematical proofs for these relationships. The results obtained are necessary conditions on the filterbank. This simplifies the design of such systems. © 2009 Springer Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets
Autor:Ruedin, A.M.C.
Ciudad:Bordeaux
Filiación:Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I., Ciudad de Buenos Aires CP 1428, Argentina
Palabras clave:Balancing; Multiwavelets; Nonseparable; Polynomial reproduction; Quincunx; Mathematical proof; Matrix filters; Multi-wavelets; Multiwavelet; Nonseparable; Orthogonality; Computer vision; Signal reconstruction; Polynomial approximation
Año:2009
Volumen:5807 LNCS
Página de inicio:54
Página de fin:65
DOI: http://dx.doi.org/10.1007/978-3-642-04697-1_6
Título revista:11th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2009
Título revista abreviado:Lect. Notes Comput. Sci.
ISSN:03029743
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v5807LNCS_n_p54_Ruedin

Referencias:

  • Cohen, A., Daubechies, I., Non-separable bidimensional wavelet bases (1993) Revista Matematica Iberoamericana, 9, pp. 51-137
  • Kovacevic, J., Vetterli, M., Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for R n (1992) IEEE Trans. Inf. Theor, 38, pp. 533-555
  • Lawton, W., Lee, S., Shen, Z., Stability and orthonormality of multivariate refin-able functions (1997) SIAM J. Math. Anal, 28, pp. 999-1014
  • Karoui, A., Vaillancourt, R., Nonseparable biorthogonal wavelet bases of L 2 (R n) (1999) CRM Proceedings and Lecture Notes American Math. Society, 18, pp. 135-151
  • Ji, H., Riemenschneider, S., Shen, Z., Multivariate compactly supported fundamental refinable functions, duals and biorthogonal wavelets Studies in Applied Mathematics, , to appear
  • Strela, V., Heller, P., Strang, G., Topiwala, P., Heil, C., The application of multi-wavelet filterbanks to image processing (1999) IEEE Transactions on Image Processing, 8, pp. 548-563
  • Plonka, G., Strela, V., Construction of multiscaling functions with approximation and symmetry (1998) SIAM Journal of Mathematical Analysis, 29, pp. 481-510
  • Keinert, F., (2003) Wavelets and Multiwavelets, 42. , Chapman and Hall/CRC Press, Boca Raton
  • Ghouti, L., Bouridane, A., Ibrahim, M., Improved image fusion using balanced. multiwavelets (2004) Proc. Eusipco
  • Tay, D., Kingsbury, N., Design of nonseparable 3-d filter banks wavelet bases using transformations of variables (1996) IEE VISP, 143, pp. 51-61
  • Ruedin, A., Balanced nonseparable orthogonal multiwavelets with two and three vanishing moments on the quincunx grid (2000) Wavelet Appl. Signal Image Proc, 8, pp. 519-527. , Proc. SPIE, 4119, pp
  • Ruedin, A.M.C.: Construction of nonseparable multiwavelets for nonlinear image compression. Eurasip J. of Applied Signal Proc. 2002 (Issue 1), 73-79 (2002); Feilner, M., Van De Ville, D., Unser, M., An orthogonal family of quincunx wavelets with continuously adjustable order (2005) IEEE Transactions on Image Processing, 14, pp. 499-510
  • Van De Ville, D., Blu, T., Unser, M., Isotropic polyharmonic b-splines: Scaling functions and wavelets (2005) IEEE Transactions on Image Processing, 14, pp. 1798-1813
  • Chen, Y., Adams, M., Lu, W., Design of optimal quincunx filter banks for image coding (2007) EURASIP J. Appl. Signal Process, 147
  • Ron, A., Smooth refinable functions provide good approximation orders (1997) SIAM J. Math. Anal, 28, pp. 731-748
  • Cabrelli, C., Heil, C., Molter, U., Accuracy of lattice translates of several multidimensional refinable functions (1998) J. of Approximation Theory, 95, pp. 5-52
  • Lebrun, J., Vetterli, M., Balanced multiwavelets: Theory and design (1998) IEEE Transactions on Signal Processing, 46, pp. 1119-1125
  • Selesnick, I., Balanced multiwavelet bases based on symmetric fir filters (2000) IEEE Trans. on Signal Processing, 48, pp. 184-191
  • Lebrun, J., Vetterli, M., High order balanced multiwavelets (1998) IEEE Proc. ICASSP, 3, pp. 1529-1532
  • Ruedin, A.M.C., Polyphase filter and polynomial reproduction conditions for the construction of smooth bidimensional multiwavelets (2007) LNCS, 4678, pp. 221-232. , Blanc-Talon, J, Philips, W, Popescu, D, Scheunders, P, eds, ACIVS 2007, Springer, HeidelbergA4 - Philips Research; DGA; The IEEE Benelux Signal Processing Chapter; Eurasip; Barco

Citas:

---------- APA ----------
(2009) . Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets. 11th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2009, 5807 LNCS, 54-65.
http://dx.doi.org/10.1007/978-3-642-04697-1_6
---------- CHICAGO ----------
Ruedin, A.M.C. "Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets" . 11th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2009 5807 LNCS (2009) : 54-65.
http://dx.doi.org/10.1007/978-3-642-04697-1_6
---------- MLA ----------
Ruedin, A.M.C. "Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets" . 11th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2009, vol. 5807 LNCS, 2009, pp. 54-65.
http://dx.doi.org/10.1007/978-3-642-04697-1_6
---------- VANCOUVER ----------
Ruedin, A.M.C. Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets. Lect. Notes Comput. Sci. 2009;5807 LNCS:54-65.
http://dx.doi.org/10.1007/978-3-642-04697-1_6