Abstract:
Let F1, …, Fs ϵ Z[X1, …, Xn] be quasiconvex polynomials of degree bounded by d ≥ 2. Let L be an upper bound for the binary length of their coefficients. We show that the system F1 ≤ 0, …, Fs ≤ 0 admits an integer solution if and only if there exists such a solution with binary length bounded by (sd)cn · L. (Here c > 0 is a constant independent on s, d, n and L). We obtain a similar geometric bound for the corresponding minimization problem. The simply exponential feature of our bound is intrinsic to this problem. © Springer-Verlag Berlin Heidelberg 1991.
Registro:
Documento: |
Artículo
|
Título: | A geometrical bound for integer programming with polynomial constraints |
Autor: | Bank, B.; Krick, T.; Mandel, R.; Solernó, P.; Budach L. |
Filiación: | Humboldt Universität zu Berlin, Fachbereich Mathematik, PSF 1297, Berlin, O-1086, Germany Working group Noaï Fitchas, Departamento de Matemáticas, Universidad de Buenos Aires, Ciudad Universitaria, Pab.I, (1428), Nuñez, Buenos Aires, Argentina
|
Palabras clave: | Bins; Computation theory; Integer solutions; Minimization problems; Quasiconvex polynomials; Upper Bound; Integer programming |
Año: | 1991
|
Volumen: | 529 LNCS
|
Página de inicio: | 121
|
Página de fin: | 125
|
DOI: |
http://dx.doi.org/10.1007/3-540-54458-5_56 |
Título revista: | 8th International Conference on Fundamentals of Computation Theory, FCT 1991
|
Título revista abreviado: | Lect. Notes Comput. Sci.
|
ISSN: | 03029743
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v529LNCS_n_p121_Bank |
Referencias:
- Bank, B., Mandel, R., (1988) Parametric integer optimization, , Akademie-Verlag, Berlin
- Bank, B., Mandel, R., (1988) (Mixed-)Integer solutions of quasiconvex polynomial inequalities, 45, pp. 20-34. , Mathematical Research Advances in Mathematical Optimization, Akademie-Verlag, Berlin
- Heintz, J., Roy, M.-F., Solernó, P., (1989) On the complexity of semialgebraic sets, pp. 293-298. , (extended abstract), Proc. IFIP 89, IX World Computer Congress, North Holland
- Heintz, J., Roy, M.-F., Solernó, P., (1989) Complexité du principe de Tarski-Seidenberg, pp. 825-830. , C. R. Acad. Sci. Paris, t.309, Serie I
- Heintz, J., Roy, M.-F., Solernó, P., (1990) Sur la complexité du principe de Tarski-Seidenberg, 118, pp. 101-126. , Bull. Soc. math. France
- Khachiyan, L.G., (1983) Convexity and complexity in polynomial programming, , Proc. Int. Congress Math., Varsaw
- Renegar, J., (1989) On the computational complexity and geometry of the first-order theory of the reals. Part III. Quantifier Elimination, 856. , Technical report, Cornell University
- Schrijver, A., (1986) Theory of linear and integer programming, , Wiley Interscience Series in Discrete Mathematics
- Solernó, P., (1989) Complejidad de conjuntos semialgebraicos, , Thesis, Universidad de Buenos Aires
- Tarasov, S.P., Khachiyan, L.G., (1980) Bounds of solutions and algorithmic complexity of systems of convex diophantine inequalities, 22 (3). , Soviet.Math. AdelA4 -
Citas:
---------- APA ----------
Bank, B., Krick, T., Mandel, R., Solernó, P. & Budach L.
(1991)
. A geometrical bound for integer programming with polynomial constraints. 8th International Conference on Fundamentals of Computation Theory, FCT 1991, 529 LNCS, 121-125.
http://dx.doi.org/10.1007/3-540-54458-5_56---------- CHICAGO ----------
Bank, B., Krick, T., Mandel, R., Solernó, P., Budach L.
"A geometrical bound for integer programming with polynomial constraints"
. 8th International Conference on Fundamentals of Computation Theory, FCT 1991 529 LNCS
(1991) : 121-125.
http://dx.doi.org/10.1007/3-540-54458-5_56---------- MLA ----------
Bank, B., Krick, T., Mandel, R., Solernó, P., Budach L.
"A geometrical bound for integer programming with polynomial constraints"
. 8th International Conference on Fundamentals of Computation Theory, FCT 1991, vol. 529 LNCS, 1991, pp. 121-125.
http://dx.doi.org/10.1007/3-540-54458-5_56---------- VANCOUVER ----------
Bank, B., Krick, T., Mandel, R., Solernó, P., Budach L. A geometrical bound for integer programming with polynomial constraints. Lect. Notes Comput. Sci. 1991;529 LNCS:121-125.
http://dx.doi.org/10.1007/3-540-54458-5_56