Abstract:
To construct a very smooth nonseparable multiscaling function, we impose polynomial approximation order 2 and add new conditions on the polyphase highpass filters. We work with a dilation matrix generating quincunx lattices, and fix the index set. Other imposed conditions are orthogonal filter bank and balancing. We construct a smooth, compactly supported multiscaling function and multiwavelet, and test the system on a noisy image with good results. © Springer-Verlag Berlin Heidelberg 2007.
Registro:
Documento: |
Artículo
|
Título: | Polyphase filter and polynomial reproduction conditions for the construction of smooth bidimensional multiwavelets |
Autor: | Ruedin, A. |
Ciudad: | Delft |
Filiación: | Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. I, CP 1428, Ciudad de Buenos Aires, Argentina
|
Palabras clave: | Multiwavelets; Nonseparable; Orthogonal filterbank; Polynomial reproduction; Orthogonal filterbank; Polynomial reproduction; Polyphase highpass filters; Filter banks; Image analysis; Noise abatement; Polynomial approximation; Wavelet transforms |
Año: | 2007
|
Volumen: | 4678 LNCS
|
Página de inicio: | 221
|
Página de fin: | 232
|
Título revista: | 9th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2007
|
Título revista abreviado: | Lect. Notes Comput. Sci.
|
ISSN: | 03029743
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4678LNCS_n_p221_Ruedin |
Referencias:
- Daubechies, I., (1992) Ten lectures on wavelets, , Society for Industrial and Applied Mathematics
- Mallat, S., (1999) A Wavelet Tour of Signal Processing, , Academic Press, London
- Cohen, A., Daubechies, I., Non-separable bidimensional wavelet bases (1993) Revista Matematica Iberoamericana, 9, pp. 51-137
- Kovacevic, J., Vetterli, M., Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn (1992) IEEE Trans. Inf. Theor, 38, pp. 533-555
- Lawton, W., Lee, S., Shen, Z., Stability and orthonormality of multivariate refinable functions (1997) SIAM J. Math. Anal, 28, pp. 999-1014
- Karoui, A., Vaillancourt, R., Nonseparable biorthogonal wavelet bases of L2(Rn) (1999) CRM Proceedings and Lecture Notes American Math. Society, 18, pp. 135-151
- Ji, H., Riemenschneider, S., Shen, Z., Multivariate compactly supported fundamental refinable functions, duals and biorthogonal wavelets Studies in Applied Mathematics, , to appear
- Strela, V., Heller, P., Strang, G., Topiwala, P., Heil, C., (1999) The application of multiwavelet filterbanks to image processing, 8, pp. 548-563
- Plonka, G., Strela, V., Construction of multiscaling functions with approximation and symmetry (1998) SIAM Journal of Mathematical Analysis, 29, pp. 481-510
- Wajcer, D., Stanhill, D., Zeevi, Y., Two-dimensional nonseparable multiwavelet transform and its application (1998) Proc. IEEE-SP Intern. Symp. Time-Frequency and Time-Scale Analysis, pp. 61-64. , IEEE Computer Society Press, Los Alamitos
- Tay, D., Kingsbury, N., Design of nonseparable 3-d filter banks wavelet bases using transformations of variables (1996) IEE VISP, 143, pp. 51-61
- Ruedin, A., Nonseparable orthogonal multiwavelets with 2 and 3 vanishing moments on the quincunx grid. Proc. SPIE Wavelet Appl (1999) Signal Image Proc, 7, pp. 455-466. , 3813
- Ruedin, A.M.C., Balanced nonseparable orthogonal multiwavelets with two and three vanishing moments on the quincunx grid. Wavelet Appl (2000) Signal Image Proc, 8, pp. 519-527. , Proc. SPIE 4119
- Ruedin, A.M.C.: Construction of nonseparable multiwavelets for nonlinear image compression. Eurasip J. of Applied Signal Proc. 2002(1), 73-79 (2002); Ruedin, A., A nonseparable multiwavelet for edge detection. Wavelet Appl (2003) Signal Image Proc, 10, pp. 700-709. , Proc. SPIE 5207
- Ruedin, A., Estimating the joint spectral radius of a nonseparable multiwavelet (2003) IEEE Proc. XXIII Int. Conf. SCCC, pp. 109-115. , IEEE Computer Society Press, Los Alamitos
- Ruedin, A.M.C., Dilation matrices for nonseparable bidimensional wavelets (2006) LNCS, 4179, pp. 91-102. , Blanc-Talon, J, Philips, W, Popescu, D, Scheunders, P, eds, ACIVS 2006, Springer, Heidelberg
- Ron, A., Smooth refinable functions provide good approximation orders (1997) SIAM J. Math. Anal, 28, pp. 731-748
- Cabrelli, C., Heil, C., Molter, U., Accuracy of lattice translates of several multi-dimensional refinable functions (1998) J. of Approximation Theory, 95, pp. 5-52
- Lebrun, J., Vetterli, M., Balanced multiwavelets: Theory and design (1998) IEEE Transactions on Signal Processing, 46, pp. 1119-1125
- Selesnick, I., Balanced multiwavelet bases based on symmetric fir filters (1999) Proceedings SPIE, Wavelet Applications in Signal Processing, 7, pp. 122-131. , 3813
Citas:
---------- APA ----------
(2007)
. Polyphase filter and polynomial reproduction conditions for the construction of smooth bidimensional multiwavelets. 9th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2007, 4678 LNCS, 221-232.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4678LNCS_n_p221_Ruedin [ ]
---------- CHICAGO ----------
Ruedin, A.
"Polyphase filter and polynomial reproduction conditions for the construction of smooth bidimensional multiwavelets"
. 9th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2007 4678 LNCS
(2007) : 221-232.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4678LNCS_n_p221_Ruedin [ ]
---------- MLA ----------
Ruedin, A.
"Polyphase filter and polynomial reproduction conditions for the construction of smooth bidimensional multiwavelets"
. 9th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2007, vol. 4678 LNCS, 2007, pp. 221-232.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4678LNCS_n_p221_Ruedin [ ]
---------- VANCOUVER ----------
Ruedin, A. Polyphase filter and polynomial reproduction conditions for the construction of smooth bidimensional multiwavelets. Lect. Notes Comput. Sci. 2007;4678 LNCS:221-232.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4678LNCS_n_p221_Ruedin [ ]