Artículo

Ruedin, A. "Dilation matrices for nonseparable bidimensional wavelets" (2006) 8th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2006. 4179 LNCS:91-102
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte la política de Acceso Abierto del editor

Abstract:

For nonseparable bidimensional wavelet transforms, the choice of the dilation matrix is all-important, since it governs the downsampling and upsampling steps, determines the cosets that give the positions of the filters, and defines the elementary set that gives a tesselation of the plane. We introduce nonseparable bidimensional wavelets, and give formulae for the analysis and synthesis of images. We analyze several dilation matrices, and show how the wavelet transform operates visually. We also show some distorsions produced by some of these matrices. We show that the requirement of their eigenvalues being greater than 1 in absolute value is not enough to guarantee their suitability for image processing applications, and discuss other conditions. © Springer-Verlag Berlin Heidelberg 2006.

Registro:

Documento: Artículo
Título:Dilation matrices for nonseparable bidimensional wavelets
Autor:Ruedin, A.
Ciudad:Antwerp
Filiación:Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Pab. I, CP 1428, Ciudad de Buenos Aires, Argentina
Palabras clave:Dilation; Nonseparable; Quincunx; Wavelet; Eigenvalues and eigenfunctions; Image analysis; Image processing; Mathematical transformations; Dilation; Dilation matrices; Nonseparable bidimensional wavelet transforms; Quincunx; Artificial intelligence
Año:2006
Volumen:4179 LNCS
Página de inicio:91
Página de fin:102
Título revista:8th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2006
Título revista abreviado:Lect. Notes Comput. Sci.
ISSN:03029743
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4179LNCS_n_p91_Ruedin

Referencias:

  • Skodras, A., Christopoulos, C., Ebrahimi, T., Jpeg2000: The upcoming still image compression standard (2001) Pattern Recognition Letters, 22, pp. 1337-1345. , Elsevier
  • Cohen, A., Daubechies, I., Non-separable bidimensional wavelet bases (1993) Revista Matematica Iberoamericana, 9, pp. 51-137
  • Karoui, A., Vaillancourt, R., Nonseparable biorthogonal wavelet bases of L2(Rn) (1999) CRM Proceedings and Lecture Notes American Math. Society, 18, pp. 135-151
  • Kovacevic, J., Vetterli, M., Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn (1992) IEEE Trans. Inf. Theor., 38, pp. 533-555
  • Cabrelli, C., Heil, C., Molter, U., Accuracy of lattice translates of several multi-dimensional refinable functions (1998) J. of Approximation Theory, 95, pp. 5-52
  • Cabrelli, C., Heil, C., Molter, U., (1999) Polynomial Reproduction by Refinable Functions, , Ka-Sing Lau
  • Ruedin, A.M.C., Construction of nonseparable multiwavelets for nonlinear image compression (2002) Eurasip J. of Applied Signal Proc., 2002 (1), pp. 73-79
  • Heil, C., Colella, D., (1994) Dilation Equations and the Smoothness of Compactly Supported Wavelets, , J. Benedetto and M. Frazier, editors, CRC Press
  • Ayache, A., Construction of non-separable dyadic compactly supported orthonormal wavelet bases L2(R2) of arbitrarily high regularity (1999) Revista Mat. Iberoamericana, 15, pp. 37-58
  • Kovacevic, J., Vetterli, M., New results on multidimensional filter banks and wavelets (1993) Proc. IEEE Int. Symposium on Circuits and Systems
  • He, W., Lai, W., Examples of bivariate non-separable continuous compactly supported orthonormal wavelets (2000) IEEE Trans. on Image Processing, 9, pp. 949-953
  • Faugère, J.C., De Saint-Martin, F.M., Rouillier, F., Design of regular nonseparable bidimensional wavelets using grobner basis techniques (1998) IEEE Trans. on Signal Processing, 46, pp. 845-856
  • Belogay, E., Wang, Y., Arbitrarily smooth orthogonal nonseparable wavelets in R2 (1999) SIAM J. Math. Anal., 30, pp. 678-697
  • Ruedin, A., Nonseparable orthogonal multiwavelets with 2 and 3 vanishing moments on the quincunx grid (1999) Proc. SPIE Wavelet Appl. Signal Image Proc. VII, 3813, pp. 455-466
  • Ruedin, A.M.C., Balanced nonseparable orthogonal multiwavelets with two and three vanishing moments on the quincunx grid (2000) Proc. SPIE, 4119, pp. 519-527. , Wavelet Appl. Signal Image Proc. VIII
  • Entezari, A., Moller, T., Vaisey, J., Subsampling matrices for wavelet decompositions on body centered cubic lattices (2004) IEEE Sign. Proc. Lett., 11, pp. 733-735A4 - Barco; et al.; Eurasip; Ghent University; IEEE Benelux Signal Processing University; Philips Research

Citas:

---------- APA ----------
(2006) . Dilation matrices for nonseparable bidimensional wavelets. 8th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2006, 4179 LNCS, 91-102.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4179LNCS_n_p91_Ruedin [ ]
---------- CHICAGO ----------
Ruedin, A. "Dilation matrices for nonseparable bidimensional wavelets" . 8th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2006 4179 LNCS (2006) : 91-102.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4179LNCS_n_p91_Ruedin [ ]
---------- MLA ----------
Ruedin, A. "Dilation matrices for nonseparable bidimensional wavelets" . 8th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2006, vol. 4179 LNCS, 2006, pp. 91-102.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4179LNCS_n_p91_Ruedin [ ]
---------- VANCOUVER ----------
Ruedin, A. Dilation matrices for nonseparable bidimensional wavelets. Lect. Notes Comput. Sci. 2006;4179 LNCS:91-102.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4179LNCS_n_p91_Ruedin [ ]