Abstract:
The identification of facial expressions with human emotions plays a key role in non-verbal human communication and has applications in several areas. In this work, we propose a descriptor based on areas and angles of triangles formed by the landmarks from face images. We test this descriptors for facial expression recognition by means of an adaptation of the k-Nearest Neighbors classifier called Citation-kNN in which the training examples come in the form of sets of feature vectors. Comparisons with other state-of-the-art techniques on the CK+ dataset are shown. The descriptor remains robust and precise in the recognition of expressions. © Springer International Publishing AG, part of Springer Nature 2018.
Registro:
Documento: |
Artículo
|
Título: | A citation k-NN approach for facial expression recognition |
Autor: | Acevedo, D.; Negri, P.; Buemi, M.E.; Gómez Fernández, F.; Mejail, M.; Velastin S.; Mendoza M.; Chilean Association of Pattern Recognition; Department of Informatics; Federico Santa Maria |
Filiación: | Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Universidad de Buenos Aires, Buenos Aires, Argentina Instituto de Investigación en Ciencias de la Computación (ICC), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina CONICET-Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
|
Palabras clave: | Nearest neighbor search; Pattern recognition; Facial expression recognition; Facial Expressions; Human emotion; K-nearest neighbors classifiers; Non-verbal human; Sets of features; State-of-the-art techniques; Training example; Face recognition |
Año: | 2018
|
Volumen: | 10657 LNCS
|
Página de inicio: | 1
|
Página de fin: | 9
|
DOI: |
http://dx.doi.org/10.1007/978-3-319-75193-1_1 |
Título revista: | 22nd Iberoamerican Congress on Pattern Recognition, CIARP 2017
|
Título revista abreviado: | Lect. Notes Comput. Sci.
|
ISSN: | 03029743
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v10657LNCS_n_p1_Acevedo |
Referencias:
- Sariyanidi, E., Gunes, H., Cavallaro, A., Automatic analysis of facial affect: A survey of registration, representation, and recognition (2015) IEEE Trans. PAMI, 37, pp. 1113-1133
- Zen, G., Porzi, L., Sangineto, E., Ricci, E., Sebe, N., Learning personalized models for facial expression analysis and gesture recognition (2016) IEEE Trans. Multimed., 18, pp. 775-788
- Lucey, P., Cohn, J., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I., The CK+ Dataset: A complete dataset for action unit and emotion-specified expression (2010) CVPRW, pp. 94-101
- Acevedo, D., Negri, P., Buemi, M.E., Mejail, M., Facial expression recognition based on static and dynamic approaches (2016) ICPR, pp. 4124-4129
- Bottino, A., Vieira, T., Ul Islam, I., Geometric and textural cues for automatic kinship verification (2015) Int. J. Pattern Recogn., 29
- Osman Ali, A., Age-invariant face recognition using triangle geometric features (2015) Int. J. Pattern Recogn. Artif. Intell., 29
- Corneanu, C.A., Survey on RGB, 3D, thermal, and multimodal approaches for facial expression recognition: History, trends, and affect-related applications (2016) IEEE Trans. Pattern Anal., 38, pp. 1548-1568
- Ubalde, S., Gómez-Fernández, F., Goussies, N.A., Mejail, M., Skeleton-based action recognition using citation-kNN on bags of time-stamped pose descriptors (2016) ICIP, pp. 3051-3055
- Wang, J., Zucker, J.D., Solving the multiple-instance problem: A lazy learning approach (2000) Proceedings of the 17Th International Conference on Machine Learning ICML 2000, pp. 1119-1126
- Sanin, A., Sanderson, C., Harandi, M., Lovell, B., Spatio-temporal covariance descriptors for action and gesture recognition (2013) WACV, pp. 103-110
- Wang, Z., Wang, S., Ji, Q., Capturing complex spatio-temporal relations among facial muscles for facial expression recognition (2013) CVPR, pp. 3422-3429
- Chew, S.W., Lucey, P., Lucey, S., Saragih, J., Cohn, J., Sridharan, S., Personindependent facial expression detection using constrained local models (2011) FG 2011, pp. 915-920A4 - Chilean Association of Pattern Recognition; Department of Informatics; Federico Santa Maria
Citas:
---------- APA ----------
Acevedo, D., Negri, P., Buemi, M.E., Gómez Fernández, F., Mejail, M., Velastin S., Mendoza M.,..., Chilean Association of Pattern Recognition; Department of Informatics; Federico Santa Maria
(2018)
. A citation k-NN approach for facial expression recognition. 22nd Iberoamerican Congress on Pattern Recognition, CIARP 2017, 10657 LNCS, 1-9.
http://dx.doi.org/10.1007/978-3-319-75193-1_1---------- CHICAGO ----------
Acevedo, D., Negri, P., Buemi, M.E., Gómez Fernández, F., Mejail, M., Velastin S., et al.
"A citation k-NN approach for facial expression recognition"
. 22nd Iberoamerican Congress on Pattern Recognition, CIARP 2017 10657 LNCS
(2018) : 1-9.
http://dx.doi.org/10.1007/978-3-319-75193-1_1---------- MLA ----------
Acevedo, D., Negri, P., Buemi, M.E., Gómez Fernández, F., Mejail, M., Velastin S., et al.
"A citation k-NN approach for facial expression recognition"
. 22nd Iberoamerican Congress on Pattern Recognition, CIARP 2017, vol. 10657 LNCS, 2018, pp. 1-9.
http://dx.doi.org/10.1007/978-3-319-75193-1_1---------- VANCOUVER ----------
Acevedo, D., Negri, P., Buemi, M.E., Gómez Fernández, F., Mejail, M., Velastin S., et al. A citation k-NN approach for facial expression recognition. Lect. Notes Comput. Sci. 2018;10657 LNCS:1-9.
http://dx.doi.org/10.1007/978-3-319-75193-1_1