Artículo

Quelas, J.I.; López-García, S.L.; Casabuono, A.; Althabegoiti, M.J.; Mongiardini, E.J.; Pérez-Giménez, J.; Couto, A.; Lodeiro, A.R. "Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots" (2006) Archives of Microbiology. 186(2):119-128
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The exopolysaccharide (EPS) is an extracellular molecule that in Bradyrhizobium japonicum affects bacterial efficiency to nodulate soybean. Culture conditions such as N availability, type of C-source, or culture age can modify the amount and composition of EPS. To better understand the relationship among these conditions for EPS production, we analyzed their influence on EPS in B. japonicum USDA 110 and its derived mutant ΔP22. This mutant has a deletion including the 3′ region of exoP, exoT, and the 5′ region of exoB, and produces a shorter EPS devoid of galactose. The studies were carried out in minimal media with the N-source at starving or sufficient levels, and mannitol or malate as the only C-source. Under N-starvation there was a net EPS accumulation, the levels being similar in the wild type and the mutant with malate as the C-source. By contrast, the amount of EPS diminished in N-sufficient conditions, being poyhydroxybutyrate accumulated with culture age. Hexoses composition was the same in both N-situations, either with mannitol or malate as the only C-source, in contrast to previous observations made with different strains. This result suggests that the change in EPS composition in response to the environment is not general in B. japonicum. The wild type EPS composition was 1 glucose:0.5 galactose:0.5 galacturonic acid:0.17 mannose. In ΔP22 the EPS had no galactose but had galacturonic acid, thus indicating that it was not produced from oxidation of UDP-galactose. Infectivity was lower in ΔP22 than in USDA 110. When the mutant infectivity was compared between N-starved or N-sufficient cultures, the N-starved were not less infective, despite the fact that the amounts of altered EPS produced by this mutant under N-starvation were higher than in N-sufficiency. Since this altered EPS does not bind soybean lectin, the interaction of EPS with this protein was not involved in increasing ΔP22 infectivity under N-starvation. © Springer-Verlag 2006.

Registro:

Documento: Artículo
Título:Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots
Autor:Quelas, J.I.; López-García, S.L.; Casabuono, A.; Althabegoiti, M.J.; Mongiardini, E.J.; Pérez-Giménez, J.; Couto, A.; Lodeiro, A.R.
Filiación:Instituto de Bioquímica Y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Argentina
Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Bradyrhizobium japonicum; EPS; Infectivity; Nitrogen; Soybean; Symbiosis; carbon; exopolysaccharide; galactose; galacturonic acid; glucose; hexose; malic acid; mannitol; mannose; nitrogen; poly(3 hydroxybutyric acid); article; bacterial strain; bacterial virulence; bacterium culture; Bradyrhizobium japonicum; carbon source; chemical composition; controlled study; gene deletion; host pathogen interaction; molecular interaction; nitrogen availability; nitrogen deficiency; nodulation; nonhuman; priority journal; soybean; symbiosis; wild type; Bacterial Adhesion; Bacterial Proteins; Bradyrhizobium; Carbon; Hexoses; Malates; Mannitol; Nitrogen; Plant Lectins; Plant Roots; Polysaccharides, Bacterial; Protein Binding; Soybean Proteins; Soybeans; Bacteria (microorganisms); Bradyrhizobium japonicum; Glycine max
Año:2006
Volumen:186
Número:2
Página de inicio:119
Página de fin:128
DOI: http://dx.doi.org/10.1007/s00203-006-0127-3
Título revista:Archives of Microbiology
Título revista abreviado:Arch. Microbiol.
ISSN:03028933
CODEN:AMICC
CAS:carbon, 7440-44-0; galactose, 26566-61-0, 50855-33-9, 59-23-4; galacturonic acid, 14982-50-4, 685-73-4; glucose, 50-99-7, 84778-64-3; hexose, 93780-23-5; malic acid, 149-61-1, 6915-15-7; mannitol, 69-65-8, 87-78-5; mannose, 31103-86-3, 3458-28-4; nitrogen, 7727-37-9; poly(3 hydroxybutyric acid), 26063-00-3; Bacterial Proteins; Carbon, 7440-44-0; Hexoses; Malates; Mannitol, 69-65-8; Nitrogen, 7727-37-9; Plant Lectins; Polysaccharides, Bacterial; Soybean Proteins; malic acid, 6915-15-7; soybean lectin
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03028933_v186_n2_p119_Quelas

Referencias:

  • Amarasingham, C.R., Davis, B.D., Regulation of α-ketoglutarate dehydrogenase formation in Escherichia coli (1965) J Biol Chem, 240, pp. 3664-3668
  • An, J., Carlson, R.W., Glushka, J., Streeter, J.G., The structure of a novel polysaccharide produced by Bradyrhizobium species within soybean nodules (1995) Carbohydr Res, 269, pp. 303-317
  • Becker, B.U., Kosch, K., Parniske, M., Müller, P., Exopolysaccharide (EPS) synthesis in Bradyrhizobium japonicum: Sequence, operon structure and mutational analysis of an exo gene cluster (1998) Mol Gen Genet, 259, pp. 161-171
  • Bhuvaneswari, T.V., Turgeon, B.G., Bauer, W.D., Early events in the infection of soybean (Glycine max L. Merr) by Rhizobium japonicum. I. Localization of infectible root cells (1980) Plant Physiol, 66, pp. 1027-1031
  • Bhuvaneswari, B.V., Mills, K.K., Crist, D.K., Evans, W.R., Bauer, W.D., Effects of culture age on symbiotic infectivity of Rhizobium japonicum (1983) J Bacteriol, 153, pp. 443-451
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Cevallos, M., Encarnación, S., Leija, A., Mora, Y., Mora, J., Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate (1996) J Bacteriol, 178, pp. 1646-1654
  • Encarnación, S., Dunn, M., Willms, K., Mora, J., Fermentative and aerobic metabolism in Rhizobium etli (1995) J Bacteriol, 177, pp. 3058-3066
  • Encarnación, S., Vargas, M.C., Dunn, M.F., Dávalos, A., Mendoza, G., Mora, Y., Mora, J., AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli (2002) J Bacteriol, 184, pp. 2287-2295
  • Fraysse, N., Couderc, F., Poinsot, V., Surface polysaccharide involvement in establishing the Rhizobium-legume symbiosis (2003) Eur J Biochem, 270, pp. 1365-1380
  • Gage, D.J., Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes (2004) Microbiol Mol Biol Rev, 68, pp. 280-300
  • González, J.E., Semino, C.E., Wang, L.-X., Castellano-Torres, L.E., Walker, G.C., Biosynthetic control of molecular weight in the polymerization of the octasaccharide subunits of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti (1998) Proc Natl Acad Sci, 95, pp. 13477-13482. , USA
  • Götz, R., Limmer, N., Ober, K., Schmitt, R., Motility and chemotaxis in two strains of Rhizobium with complex flagella (1982) J Gen Microbiol, 128, pp. 789-798
  • Hozbor, D.F., Pich Otero, A.J.L., Lodeiro, A.R., Del Papa, M.F., Pistorio, M., Lagares, A., Functional complementation among different surface polysaccharides in the symbiosis between Sinorhizobium meliloti and Medicago species (2004) Res Microbiol, 155, pp. 855-860
  • Kaneko, T., Nakamura, Y., Sato, S., Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA 110 (2002) DNA Res, 9, pp. 189-197
  • Karr, D.B., Liang, R.-T., Reuhs, B.L., Emerich, D.W., Altered exopolysaccharides of Bradyrhizobium japonicum mutants correlate with impaired soybean lectin binding, but not with effective nodule formation (2000) Planta, 211, pp. 218-226
  • Kereszt, A., Kiss, E., Reuhs, B.L., Carlson, R.W., Kondorosi, A., Putnoky, P., Novel rkp gene clusters of Sinorhizobium meliloti involved in capsular polysaccharide production and invasion of the symbiotic nodule: The rkpK gene encodes a UDP-glucose dehydrogenase (1998) J Bacteriol, 180, pp. 5426-5431
  • Laus, M.C., Logman, T.J., Van Brussel, A.A., Carlson, R.W., Azadi, P., Gao, M.Y., Kijne, J.W., Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia saliva subsp. nigra (2004) J Bacteriol, 186, pp. 6617-6625
  • Law, J.H., Slepecky, R.A., Assay of poly-hydroxybutyric acid (1961) J Bacteriol, 82, pp. 33-36
  • Lis, H., Sela, B.A., Sachs, L., Sharon, N., Specific inhibition by N-acetyl-D-galactosamine of the interaction between soybean agglutinin and animal cell surfaces (1970) Biochim Biophys Acta, 211, pp. 582-585
  • Lodeiro, A.R., González, P., Hernández, A., Balagué, L.J., Favelukes, G., Comparison of drought tolerance in nitrogen-fixing and inorganic nitrogen-grown common beans (2000) Plant Sci, 154, pp. 31-41
  • López-García, S., Vázquez, T.E.E., Favelukes, G., Lodeiro, A., Improved soybean root association of N-starved Bradyrhizobium japonicum (2001) J Bacteriol, 183, pp. 7241-7252
  • Louch, H.A., Miller, K.J., Synthesis of a low-molecular-weight form of exopolysaccharide by Bradyrhizobium japonicum USDA 110 (2001) Appl Environ Microbiol, 67, pp. 1011-1014
  • Mort, A.J., Bauer, W.D., Composition of the capsular and extracellular polysaccharides of Rhizobium japonicum. Changes with culture age and correlations with binding of soybean seed lectin to the bacteria (1980) Plant Physiol, 66, pp. 158-163
  • Mort, A.J., Bauer, W.D., Application of two new methods for cleavage of polysaccharides into specific oligosaccharide fragments. Structure of the capsular and extracellular polysaccharides of Rhizobium japonicum that bind soybean lectin (1982) J Biol Chem, 257, pp. 1870-1875
  • Niehaus, K., Baier, R., Kohring, B., Flashl, E., Pühler, A., Symbiotic suppression of the Medicago sativa plant defence system by Rhizobium meliloti oligosaccharides (1997) Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture, pp. 110-114. , Legoki A, Bothe H, Pühler A (eds) Springer, Berlin Heidelberg New York
  • Niemeyer, D., Becker, A., The molecular weight distribution of succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein (2001) J Bacteriol, 183, pp. 5163-5170
  • Ong, L.C., Lin, Y.-H., Metabolite profiles and growth characteristics of Rhizobium meliloti cultivated at different specific growth rates (2003) Biotechnol Prog, 19, pp. 714-719
  • Panzieri, M., Marchettini, N., Hallam, T.G., Importance of the Bradyrhizobium japonicum symbiosis for the sustainability of a soybean cultivation (2000) Ecol Model, 135, pp. 301-310
  • Parniske, M., Kosch, K., Werner, D., Müller, P., ExoB mutants of Bradyrhizobium japonicum with reduced competitiveness for nodulation of Glycine max (1993) Mol Plant-Microbe Interact, 6, pp. 99-106
  • Parniske, M., Schmidt, P.E., Kosch, K., Müller, P., Plant defense responses of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum (1994) Mol Plant-Microbe Interact, 7, pp. 631-638
  • Patriarca, E.J., Tatè, R., Ferraioli, S., Iaccarino, M., Organogenesis of the legume root nodules (2004) Int Rev Cytol, 234, pp. 201-262
  • Streeter, J.G., Salminen, S.O., Whitmoyer, R.E., Carlson, R.W., Formation of novel polysaccharides by Bradyrhizobium japonicum bacteroids in soybean nodules (1992) Appl Environ Microbiol, 58, pp. 607-613
  • Trevelyan, W.E., Harrison, J.S., Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates (1952) Biochem J, 50, pp. 298-310
  • Van Rhijn, P., Goldberg, R.B., Hirsch, A.M., Lotus corniculatus nodulation specificity is changed by the presence of a soybean lectin gene (1998) Plant Cell, 10, pp. 1233-1249
  • Vincent, J.M., A manual for the practical study of the root nodule bacteria (1970) IBP Handbook No. 15, , Blackwell, Oxford

Citas:

---------- APA ----------
Quelas, J.I., López-García, S.L., Casabuono, A., Althabegoiti, M.J., Mongiardini, E.J., Pérez-Giménez, J., Couto, A.,..., Lodeiro, A.R. (2006) . Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots. Archives of Microbiology, 186(2), 119-128.
http://dx.doi.org/10.1007/s00203-006-0127-3
---------- CHICAGO ----------
Quelas, J.I., López-García, S.L., Casabuono, A., Althabegoiti, M.J., Mongiardini, E.J., Pérez-Giménez, J., et al. "Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots" . Archives of Microbiology 186, no. 2 (2006) : 119-128.
http://dx.doi.org/10.1007/s00203-006-0127-3
---------- MLA ----------
Quelas, J.I., López-García, S.L., Casabuono, A., Althabegoiti, M.J., Mongiardini, E.J., Pérez-Giménez, J., et al. "Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots" . Archives of Microbiology, vol. 186, no. 2, 2006, pp. 119-128.
http://dx.doi.org/10.1007/s00203-006-0127-3
---------- VANCOUVER ----------
Quelas, J.I., López-García, S.L., Casabuono, A., Althabegoiti, M.J., Mongiardini, E.J., Pérez-Giménez, J., et al. Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots. Arch. Microbiol. 2006;186(2):119-128.
http://dx.doi.org/10.1007/s00203-006-0127-3