Doumic, L.I.; Génova, M.; Žerjav, G.; Pintar, A.; Cassanello, M.C.; Romeo, H.E.; Ayude, M.A. "Hierarchically structured TiO 2 -based composites for Fenton-type oxidation processes" (2019) Journal of Environmental Management. 236:591-602
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


A novel hierarchically structured composite aimed as a stable catalyst for the heterogeneous Fenton-type (HFT) oxidation process was developed by using a cost-effective and versatile technique. Prussian Blue nanoparticles (PBNP) were dispersed onto aligned macroporous TiO 2 (rutile) monoliths prepared via directional freezing of aqueous dispersions of TiO 2 nanoparticles. The catalytic performance was evaluated in the HFT oxidation of an azo dye frequently used as a model contaminant, Orange G (OG). Experiments were carried out in a liquid batch-recycle reactor, in which the liquid flow rate was set to ensure negligible external mass transfer resistance. The catalyst exhibited good activity to form highly oxidative radicals from hydrogen peroxide decomposition, which readily discolored OG. Significant reduction of the time required to attain complete discoloration and improvement in TOC removal were achieved by adjusting operating conditions and oxidant dosage strategies. Almost complete OG conversion at around 90 min and 34.4% of TOC removal after 4 h were achieved by using the best evaluated strategy. The catalyst activity was tested under specific operating conditions and remained unaltered during 42 cycles of 4 h each (total 168 h). The fresh and used PBNP/TiO 2 catalysts and the support were thoroughly characterized by several techniques. Results supported the excellent stability exhibited by the catalyst in the OG HFT oxidation. © 2019 Elsevier Ltd


Documento: Artículo
Título:Hierarchically structured TiO 2 -based composites for Fenton-type oxidation processes
Autor:Doumic, L.I.; Génova, M.; Žerjav, G.; Pintar, A.; Cassanello, M.C.; Romeo, H.E.; Ayude, M.A.
Filiación:División Catalizadores y Superficies, INTEMA-CONICET, Departamento de Ingeniería Química, Facultad de Ingeniería, UNMdP, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina
Department for Environmental Sciences and Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1001, Slovenia
LARSI, Dep. Industrias, FCEyN, Universidad de Buenos Aires, Int. Güiraldes 2620, Buenos Aires, C1428BGA, Argentina
División Polímeros Nanoestructurados, INTEMA-CONICET, Facultad de Ingeniería, UNMdP, Av. Juan B. Justo 4302, Mar del Plata, B7608FDQ, Argentina
Palabras clave:Heterogeneous Fenton-type oxidation; Hierarchically structured porous materials; Prussian Blue nanoparticles; Stability; ferrous gluconate; hydrogen peroxide; hydroxyl radical; organic compound; oxidizing agent; titanium dioxide; catalysis; catalyst; composite; dispersion; dye; experiment; hydrogen peroxide; mass transfer; nanoparticle; oxidation; oxide; porous medium; rutile; titanium; total organic carbon; adsorption; Article; catalyst; decomposition; Fenton reaction; field emission scanning electron microscopy; flow rate; Fourier transform infrared spectroscopy; heat treatment; hysteresis; liquid; mineralization; oxidation; porosity; surface area; temperature; thermogravimetry; X ray diffraction
Página de inicio:591
Página de fin:602
Título revista:Journal of Environmental Management
Título revista abreviado:J. Environ. Manage.
CAS:ferrous gluconate, 299-29-6; hydrogen peroxide, 7722-84-1; hydroxyl radical, 3352-57-6; titanium dioxide, 1317-70-0, 1317-80-2, 13463-67-7, 51745-87-0


  • Agrisuelas, J., García-Jareño, J.J., Gimenez-Romero, D., Vicente, F., Insights on the mechanism of insoluble-to-soluble Prussian Blue transformation (2009) J. Electrochem. Soc., 156 (10), p. P149
  • Ahmadi, M., Kakavandi, B., Jorfi, S., Azizi, M., Oxidative degradation of aniline and benzotriazole over PAC@FeIIFe2IIIO4: A recyclable catalyst in a heterogeneous photo-Fenton-like system (2017) J. Photochem. Photobiol. Chem., 336, pp. 42-53
  • Akhtar, F., Andersson, L., Ogunwumi, S., Hedin, N., Bergström, L., Structuring adsorbents and catalysts by processing of porous powders (2014) J. Eur. Ceram. Soc., 34 (7), pp. 1643-1666
  • Bagheri, S., Muhd Julkapli, N., Bee Abd Hamid, S., Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis (2014) Sci. World J., pp. 1-21. , 2014
  • Bu, F.-X., Hu, M., Zhang, W., Meng, Q., Xu, L., Jiang, D.-M., Jiang, J.-S., Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties (2015) Chem. Commun., 51 (99), pp. 17568-17571
  • Byrne, C., Fagan, R., Hinder, S., McCormack, D.E., Pillai, S.C., New approach of modifying the anatase to rutile transition temperature in TiO 2 photocatalysts (2016) RSC Adv., 6 (97), pp. 95232-95238
  • Chakrabarti, M.H., Roberts, E.P.L., Analysis of mixtures of ferrocyanide and ferricyanide using UV-visible spectroscopy for characterization of a novel redox flow battery (2008) J. Chem. Soc. Pakistan, 30, pp. 817-823
  • Chen, F., Ma, W., He, J., Zhao, J., Fenton degradation of malachite green catalyzed by aromatic additives (2002) J. Phys. Chem., 106 (41), pp. 9485-9490
  • Chu, W., Chan, K.H., Kwan, C.Y., Choi, K.Y., Degradation of atrazine by modified stepwise-Fenton's processes (2007) Chemosphere, 67 (4), pp. 755-761
  • Costa, R.C.C., Moura, F.C.C., Ardisson, J.D., Fabris, J.D., Lago, R.M., Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides (2008) Appl. Catal. B Environ., 83 (1-2), pp. 131-139
  • Cychosz, K.A., Guillet-Nicolas, R., García-Martínez, J., Thommes, M., Recent advances in the textural characterization of hierarchically structured nanoporous materials (2017) Chem. Soc. Rev., 46 (2), pp. 389-414
  • Doumic, L.I., Haure, P.M., Cassanello, M.C., Ayude, M.A., Mineralization and efficiency in the homogeneous Fenton Orange G oxidation (2013) Appl. Catal. B Environ., 142-143, pp. 214-221
  • Doumic, L.I., Salierno, G., Ramos, C., Haure, P.M., Cassanello, M.C., Ayude, M.A., “Soluble” vs. “insoluble” Prussian blue based catalysts: influence on Fenton-type treatment (2016) RSC Adv., 6 (52), pp. 46625-46633
  • Doumic, L., Salierno, G., Cassanello, M., Haure, P., Ayude, M., Efficient removal of Orange G using Prussian Blue nanoparticles supported over alumina (2015) Catal. Today, 240, pp. 67-72
  • Farah, A.M., Billing, C., Dikio, C.W., Dibofori-Orji, A.N., Oyedeji, O.O., Wankasi, D., Mtunzi, F.M., Dikio, E.D., Synthesis of Prussian Blue and its electrochemical detection of hydrogen peroxide based on cetyltrimethylammonium bromide (ctab) modified glassy carbon electrode (2013) Int. J. Electrochem. Sci., 8, pp. 12132-12146
  • Garrido-Ramírez, E.G., Theng, B.K., Mora, M.L., Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A review (2010) Appl. Clay Sci., 47 (3-4), pp. 182-192
  • Gournis, D., Papachristodoulou, C., Maccallini, E., Rudolf, P., Karakassides, M.A., Karamanis, D.T., A two-dimensional magnetic hybrid material based on intercalation of a cationic Prussian blue analog in montmorillonite nanoclay (2010) J. Colloid Interface Sci., 348 (2), pp. 393-401
  • Gutiérrez, M.C., Ferrer, M.L., del Monte, F., Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly † (2008) Chem. Mater., 20 (3), pp. 634-648
  • Güzel, F., Sayğılı, H., Sayğılı, G.A., Koyuncu, F., Elimination of anionic dye by using nanoporous carbon prepared from an industrial biowaste (2014) J. Mol. Liq., 194, pp. 130-140
  • Harrelkas, F., Paulo, A., Alves, M.M., El Khadir, L., Zahraa, O., Pons, M.N., van der Zee, F.P., Photocatalytic and combined anaerobic–photocatalytic treatment of textile dyes (2008) Chemosphere, 72 (11), pp. 1816-1822
  • He, J., Yang, X., Men, B., Wang, D., Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review (2016) J. Environ. Sci., 39, pp. 97-109
  • Hisaindee, S., Meetani, M.A., Rauf, M.A., Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms (2013) Trac. Trends Anal. Chem., 49, pp. 31-44
  • Kaye, S.S., Long, J.R., The role of vacancies in the hydrogen storage properties of Prussian blue analogues (2007) Catal. Today, 120 (3-4), pp. 311-316
  • Kitada, A., Hasegawa, G., Kobayashi, Y., Kanamori, K., Nakanishi, K., Kageyama, H., Selective preparation of macroporous monoliths of conductive titanium oxides Ti n O 2 n –1 (n = 2, 3, 4, 6) (2012) J. Am. Chem. Soc., 134 (26), pp. 10894-10898
  • Koncki, R., Chemical sensors and biosensors based on prussian blues (2002) Crit. Rev. Anal. Chem., 32 (1), pp. 79-96
  • Kulesza, P.J., Malik, M.A., Denca, A., Strojek, J., In situ FT-IR/ATR spectroelectrochemistry of Prussian Blue in the solid state (1996) Anal. Chem., 68 (14), pp. 2442-2446
  • Lee, J., Kim, S., Yoon, J., Rocking chair desalination battery based on Prussian Blue electrodes (2017) ACS Omega, 2 (4), pp. 1653-1659
  • Lee, S.-H., Huh, Y.-D., Preferential evolution of prussian blue's morphology from cube to hexapod (2012) Bull. Korean Chem. Soc., 33 (3), pp. 1078-1080
  • Lehto, J., Pettersson, M., Hinkula, J., Räsänen, M., Elomaa, M., Gases evolved in the thermal decomposition of potassium cobalt hexacyanoferrate(II) (1995) Thermochim. Acta, 265, pp. 25-30
  • Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B., Surface area and pore texture of catalysts (1998) Catal. Today, 41 (1-3), pp. 207-219
  • Li, X., Wang, J., Rykov, A.I., Sharma, V.K., Wei, H., Jin, C., Prussian blue/TiO 2 nanocomposites as a heterogeneous photo-Fenton catalyst for degradation of organic pollutants in water (2015) Catal. Sci. Technol., 5 (1), pp. 504-514
  • Lin, L., Huang, X., Wang, L., Tang, A., Synthesis, characterization and the electrocatalytic application of prussian blue/titanate nanotubes nanocomposite (2010) Solid State Sci., 12 (10), pp. 1764-1769
  • Lin, S.-S., Gurol, M.D., Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications (1998) Environ. Sci. Technol., 32 (10), pp. 1417-1423
  • Liu, S.-Q., Cheng, S., Feng, L.-R., Wang, X.-M., Chen, Z.-G., Effect of alkali cations on heterogeneous photo-Fenton process mediated by Prussian blue colloids (2010) J. Hazard. Mater., 182 (1-3), pp. 665-671
  • Lopez-Orozco, S., Inayat, A., Schwab, A., Selvam, T., Schwieger, W., Zeolitic materials with hierarchical porous structures (2011) Adv. Mater., 23 (22-23), pp. 2602-2615
  • Mimura, H., Lehto, J., Harjula, R., Chemical and Thermal Stability of Potassium Nickel Hexacyanoferrate (II) (1997) J. Nucl. Sci. Technol., 34 (6), pp. 582-587
  • Munoz, M., de Pedro, Z.M., Menendez, N., Casas, J.A., Rodriguez, J.J., A ferromagnetic γ-alumina-supported iron catalyst for CWPO. Application to chlorophenols (2013) Appl. Catal. B Environ., 136-137, pp. 218-224
  • Mustafa, S., Dilara, B., Nargis, K., Naeem, A., Shahida, P., Surface properties of the mixed oxides of iron and silica (2002) Colloid. Surf. A Physicochem. Eng. Asp., 205 (3), pp. 273-282
  • Nidheesh, P.V., Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review (2015) RSC Adv., 5 (51), pp. 40552-40577
  • Pandey, P.C., Pandey, A.K., Tetrahydrofuran hydroperoxide mediated synthesis of Prussian blue nanoparticles: a study of their electrocatalytic activity and intrinsic peroxidase-like behavior (2014) Electrochim. Acta, 125, pp. 465-472
  • Parlett, C.M.A., Wilson, K., Lee, A.F., Hierarchical porous materials: catalytic applications (2013) Chem. Soc. Rev., 42 (9), pp. 3876-3893
  • Pouran, R.S., Abdul Raman, A.A., Wan Daud, W.M.A., Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions (2014) J. Clean. Prod., 64, pp. 24-35
  • Rusevova, K., Kopinke, F.-D., Georgi, A., Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance (2012) J. Hazard. Mater., 241-242, pp. 433-440
  • Rytwo, G., Zakai, R., Wicklein, B., The Use of ATR-FTIR spectroscopy for quantification of adsorbed compounds (2015) J. Spectrosc., 2015, pp. 1-8
  • Samain, L., Grandjean, F., Long, G.J., Martinetto, P., Bordet, P., Strivay, D., Relationship between the Synthesis of Prussian Blue Pigments, Their Color, Physical Properties, and Their Behavior in Paint Layers (2013) J. Phys. Chem. C, 117 (19), pp. 9693-9712
  • Schwieger, W., Machoke, A.G., Weissenberger, T., Inayat, A., Selvam, T., Klumpp, M., Inayat, A., Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity (2016) Chem. Soc. Rev., 45 (12), pp. 3353-3376
  • Soon, A.N., Hameed, B.H., Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process (2011) Desalination, 269 (1-3), pp. 1-16
  • Su, B.-L., Sanchez, C., Yang, X.-Y., (2012) Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science, , Wiley-VCH Weinheim Clément Sanchez
  • Sun, B., Smirniotis, P.G., Interaction of anatase and rutile TiO2 particles in aqueous photooxidation (2003) Catal. Today, 88 (1-2), pp. 49-59
  • Sun, M.-H., Huang, S.-Z., Chen, L.-H., Li, Y., Yang, X.-Y., Yuan, Z.-Y., Su, B.-L., Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine (2016) Chem. Soc. Rev., 45 (12), pp. 3479-3563
  • Thamaphat, K., Limsuwan, P., Ngotawornchai, B., Phase characterization of TiO2 powder by XRD and TEM (2008) Kasetsart J. Nat. Sci., 42, pp. 357-361
  • Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) (2015) Pure Appl. Chem., 87 (9-10)
  • Usman, M., Byrne, J.M., Chaudhary, A., Orsetti, S., Hanna, K., Ruby, C., Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals (2018) Chem. Rev., 118 (7), pp. 3251-3304
  • Vipin, A.K., Hu, B., Fugetsu, B., Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water (2013) J. Hazard. Mater., 258 (259), pp. 93-101
  • Wang, G., Xu, L., Zhang, J., Yin, T., Han, D., Enhanced photocatalytic activity of powders (P25) via calcination treatment (2012) Int. J. Photoenergy, pp. 1-9. , 2012
  • Wang, H., Huang, Y., Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2 (2011) J. Hazard. Mater., 191 (1-3), pp. 163-169
  • Wang, J.L., Xu, L.J., Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application (2012) Crit. Rev. Environ. Sci. Technol., 42 (3), pp. 251-325
  • Wang, X., Yu, J.C., Ho, C., Hou, Y., Fu, X., Photocatalytic activity of a Hierarchically macro/mesoporous Titania (2005) Langmuir, 21 (6), pp. 2552-2559
  • Watzky, M.A., Endicott, J.F., Song, X., Lei, Y., Macatangay, A., Red-shifted cyanide stretching frequencies in cyanide-bridged transition metal donor−acceptor complexes. support for vibronic coupling (1996) Inorg. Chem., 35 (12), pp. 3463-3473
  • Wu, C.-H., Chiu, Y.-T., Lin, K.-Y.A., Macrosphere-supported nanoscale Prussian blue analogues prepared via self-assembly as multi-functional heterogeneous catalysts for aqueous oxidative and reductive reactions (2018) Separ. Purif. Technol., 199, pp. 222-232
  • Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Use of iron oxide nanomaterials in wastewater treatment: A review (2012) Sci. Total Environ., 424, pp. 1-10
  • Xue, X., Hanna, K., Deng, N., Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide (2009) J. Hazard. Mater., 166 (1), pp. 407-414
  • Yang, X., Tan, L., Xia, L., Wood, C.D., Tan, B., Hierarchical porous polystyrene monoliths from PolyHIPE (2015) Macromol. Rapid Commun., 36 (17), pp. 1553-1558
  • Yue, Y., Zhang, Z., Binder, A.J., Chen, J., Jin, X., Overbury, S.H., Dai, S., Hierarchically superstructured Prussian Blue analogues: spontaneous assembly synthesis and applications as pseudocapacitive materials (2015) ChemSusChem, 8 (1), pp. 177-183
  • Zhang, J., Zhang, C., Wei, G., Zhang, C., Zhu, J., He, H., Liang, X., Catalytic Activity of Titanomagnetite in Heterogeneous Fenton Reaction: Contribution from Structural Fe 2+ and Fe 3+ (2017) J. Nanosci. Nanotechnol., 17 (9), pp. 7015-7020
  • Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., Gu, N., Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity (2010) J. Mater. Chem., 20 (24), p. 5110


---------- APA ----------
Doumic, L.I., Génova, M., Žerjav, G., Pintar, A., Cassanello, M.C., Romeo, H.E. & Ayude, M.A. (2019) . Hierarchically structured TiO 2 -based composites for Fenton-type oxidation processes. Journal of Environmental Management, 236, 591-602.
---------- CHICAGO ----------
Doumic, L.I., Génova, M., Žerjav, G., Pintar, A., Cassanello, M.C., Romeo, H.E., et al. "Hierarchically structured TiO 2 -based composites for Fenton-type oxidation processes" . Journal of Environmental Management 236 (2019) : 591-602.
---------- MLA ----------
Doumic, L.I., Génova, M., Žerjav, G., Pintar, A., Cassanello, M.C., Romeo, H.E., et al. "Hierarchically structured TiO 2 -based composites for Fenton-type oxidation processes" . Journal of Environmental Management, vol. 236, 2019, pp. 591-602.
---------- VANCOUVER ----------
Doumic, L.I., Génova, M., Žerjav, G., Pintar, A., Cassanello, M.C., Romeo, H.E., et al. Hierarchically structured TiO 2 -based composites for Fenton-type oxidation processes. J. Environ. Manage. 2019;236:591-602.