Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Bioremediation of contaminated sites by biosorption of pollutants onto a wide range of materials has emerged as a promising treatment for recalcitrant aromatic compounds or heavy metals. When adsorption occurs on living white-rot fungi mycelia, the pollutants may be degraded by ligninolytic enzymes. However, the survival of mycelia in harsh conditions is one of the drawbacks of those methodologies. In this study, it was demonstrated that culture media supplemented with several guaiacol derivatives (vanilloids) increased the resistance of Ganoderma lucidum E47 cultures to chemical stress by enhancing the adsorptive capacity of the extracellular mucilaginous material (ECMM). The toxicity of the fungicides gentian violet (GV), malachite green (MG) and clotrimazole, and the heavy metal Cadmium was noticeably diminished in fungal cultures supplemented with the guaiacol derivative vanillic acid (VA). No degradation of the tested compounds was detected. The activity of the oxidative enzymatic systems like laccase, a well-known oxidase associated to dye degradation, was only detectable after complete growth on plates. Extremely low concentrations of VA caused a significant protective effect, radial extension of the growth halo in plates supplemented with 0.0001mM of VA plus GV was up to 20% to that obtained in control plates (without addition of GV and VA). Therefore, the protective effect could not be attributable to VA per se. ECMM separated from the mycelium exhibited a much higher increase in the adsorptive capacity when isolated from liquid cultures containing VA, while that obtained from unsupplemented cultures showed an almost null adsorptive capacity. © 2013 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum
Autor:Kuhar, F.; Papinutti, L.
Filiación:Lab. de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Ciudad Universitaria, Argentina
Palabras clave:Bioremediation; Biosorption; Exopolysaccharide; Fungal growth; Ligninolytic enzymes; White rot fungi; cadmium; clotrimazole; crystal violet; guaiacol; malachite green; vanillic acid; benzaldehyde derivative; coumaric acid; ferulic acid; fungicide; pollutant; vanillic acid; vanillin; adsorption; biodegradation; bioremediation; cadmium; concentration (composition); contaminated land; enzyme activity; fungus; lignin; organic acid; polysaccharide; toxicity; adsorption; antifungal resistance; article; bioremediation; biosorption; chemical stress; concentration (parameters); controlled study; Ganoderma lucidum; liquid culture; nonhuman; oxidation; protection; drug effects; Ganoderma lucidum; growth, development and aging; kinetics; metabolism; pollutant; toxicity; Fungi; Ganoderma lucidum; Gentiana; Adsorption; Benzaldehydes; Biodegradation, Environmental; Coumaric Acids; Environmental Pollutants; Fungicides, Industrial; Kinetics; Reishi; Vanillic Acid
Año:2013
Volumen:124
Página de inicio:1
Página de fin:7
DOI: http://dx.doi.org/10.1016/j.jenvman.2013.03.040
Título revista:Journal of Environmental Management
Título revista abreviado:J. Environ. Manage.
ISSN:03014797
CODEN:JEVMA
CAS:cadmium, 22537-48-0, 7440-43-9; clotrimazole, 23593-75-1; crystal violet, 467-63-0, 548-62-9; guaiacol, 26638-03-9, 28930-19-0, 90-05-1; malachite green, 569-64-2; vanillic acid, 121-34-6; coumaric acid, 25429-38-3; ferulic acid, 1135-24-6, 24276-84-4; vanillin, 121-33-5; Benzaldehydes; Coumaric Acids; Environmental Pollutants; ferulic acid; Fungicides, Industrial; Vanillic Acid; vanillin
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03014797_v124_n_p1_Kuhar

Referencias:

  • Ambrósio, S.T., Vilar, J.C., Alves da Silva, C., Okada, K., Nascimento, A., Longo, R., Campos, G., Biosorption isotherm model for the removal of reactive azo dyes by inactivated mycelia of Cunninghamella elegans UPC5422012 (2012) Molecules, 17, pp. 452-462
  • Archibald, F.S., Anew assay for lignin-type peroxidases employing the dye azure B (1992) Appl. Environ. Microbiol., 58, pp. 3110-3116
  • Argumedo-Delira, R., Alarcón, A., Ferrera-Cerrato, R., Almaraz, J.J., Peña-Cabriales, J.J., Tolerance and growth of 11 Trichoderma strains to crude oil, naphthalene, phenanthrene and benzo[a]pyrene (2012) J.Environ. Manage., 95, pp. S291-S299
  • Asgher, M., Biosorption of reactive dyes: a review (2012) Water Air Soil Pollut., 223, pp. 2417-2435
  • Asgher, M., Noreen, S., Bhatti, H.N., Decolorization of dye-containing textile industry effluents using Ganoderma lucidum IBL-05 in still cultures (2010) Water Environ. Res., 82, pp. 357-361
  • Barr, D.P., Aust, S.D., Mechanisms white-rot fungi use to degrade pollutants (1994) Environ. Sci. Technol., 28, pp. 78-87
  • Bibi, I., Bhatti, H.N., Asgher, M., Decolourisation of direct dyes with manganese peroxidase from white rot basidiomycete Ganoderma lucidum IBL-5 (2009) Can. J. Chem. Eng., 87, pp. 435-440
  • Borrás, E., Llorens-Blanch, G., Rodríguez-Rodríguez, C., Sarrá, M., Caminal, G., Soil colonization by Trametes versicolor grown on lignocellulosic materials: substrate selection and naproxen degradation (2011) Int. Biodeter. Biodegr., 65, pp. 846-852
  • Cerino-Córdova, F.J., García-León, A.M., Soto-Regalado, E., Sánchez-González, M.N., Lozano-Ramírez, T., García-Avalos, B.C., Loredo-Medrano, J.A., Experimental design for the optimization of copper biosorption from aqueous solution by Aspergillus terreus (2012) J.Environ. Manage., 95, pp. S77-S82
  • Colica, G., Mecarozzi, P.C., De Philippis, R., Treatment of Cr(VI)-containing wastewaters with exopolysaccharide-producing cyanobacteria in pilot flow through and batch systems (2010) Appl. Microbiol. Biotechnol., 87, pp. 1953-1961
  • Cruz Ramírez, M.G., Rivera-Ríos, J.M., Téllez-Jurado, A., Maqueda Gálvez, A.P., Mercado-Flores, Y., Arana-Cuenca, A., Screening for thermotolerant ligninolytic fungi with laccase, lipase, and protease activity isolated in Mexico (2012) J.Environ. Manage., 95, pp. S256-S259
  • Cullen, D., Kersten, P.J., Enzymology and molecular biology of lignin degradation (2004) The Mycota III: Biochemistry and Molecular Biology, pp. 249-273. , Springer-Verlag, Berlin-Heidelberg, R. Brambl, G.A. Marzluf (Eds.)
  • de la Rubia, T., Ruiz, E., Pérez, J., Martínez, J., Properties of a laccase produced by Phanerochaete flavido-alba induced by vanillin (2002) Arch. Microbiol., 179, pp. 70-73
  • Gao, D., Du, L., Yang, J., Wu, W.-M., Liang, H., Acritical review of the application of white rot fungus to environmental pollution control (2010) Crit. Rev. Biotechnol., 30, pp. 70-77
  • Gao, D., Zeng, Y., Wen, X., Qian, Y., Competition strategies for the incubation of white rot fungi under non-sterile conditions (2008) Process. Biochem., 43, pp. 937-944
  • González, A.G., Shirokova, L.S., Pokrovsky, O.S., Emnova, E.E., Martínez, R.E., Santana-Casiano, J.M., González-Dávila, M., Pokrovski, G.S., Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides (2010) J.Colloid Interface Sci., 350, pp. 305-314
  • Kantar, C., Demiray, H., Dogan, N.M., Dodge, C.J., Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr (III) complexation with EPS in aqueous solution (2011) Chemosphere, 82, pp. 1489-1495
  • Kulshresta, M., Venkobachar, C., Removal and recovery of uranium (VI) using a fungal based low-cost biosorbent Ganoderma lucidum (2008) Int. J. Environ. Pollut., 34, pp. 83-96
  • Lang, E., Nerud, F., Zadrazil, F., Production of ligninolytic enzymes by Pleurotus sp. and Dichomitus squalens in soil and lignocellulose substrate as influenced by soil microorganisms (1998) FEMS Microbiol. Lett., 167, pp. 239-244
  • Lestan, D., Lestan, M., Chapelle, J.A., Lamar, R.T., Biological potential of fungal inocula for bioaugmentation of contaminated soils (1996) J.Ind. Microbiol., 16, pp. 286-294
  • Levin, L., Papinutti, L., Forchiassin, F., Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes (2004) Bioresour. Technol., 94, pp. 169-176
  • Maurya, N.S., Mittal, A.K., Biosorptive uptake of cationic dyes from aqueous phase using immobilised dead macro fungal biomass (2011) Int. J. Environ. Technol. Manag., 14, pp. 282-293
  • Mougin, C., Pericaud, C., Dubroca, J., Asther, M., Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium (1997) Soil Biol. Biochem., 29, pp. 1321-1324
  • Pakshirajan, K., Kheria, S., Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor (2012) J.Environ. Manage., 101, pp. 118-123
  • Papinutti, L., Mouso, N., Forchiassin, F., Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran-Fomes sclerodermeus (2006) Enzyme Microb. Technol., 39, pp. 848-853
  • Pointing, S.B., Feasibility of bioremediation by white-rot fungi (2001) Appl. Microbiol. Biotechnol., 57, pp. 20-33
  • Rosa, A., Atzeri, A., Deiana, M., Melis, M.P., Incani, A., Corona, G., Loru, D., Dessi, A.M., Protective effect of vanilloids against tert-butyl hydroperoxide-induced oxidative stress in vero cells culture (2008) J.Agric. Food Chem., 56, pp. 3546-3553
  • Srinivasan, A., Viraraghavan, T., Decolorization of dye wastewaters by biosorbents: a review (2010) J.Environ. Manage., 91, pp. 1915-1929
  • Ting, W.T.E., Yuan, S.Y., Wu, S.D., Chang, B.V., Biodegradation of phenanthrene and pyrene by Ganoderma lucidum (2011) Int. Biodeter. Biodegr., 65, pp. 238-242
  • Turlo, J., Gutkowska, B., Herold, F., Dawidowski, M., Slowinski, T., Zobel, A., Relationship between selenium accumulation and mycelial cell composition in Lentinula edodes (Berk.) cultures (2010) J.Toxicol. Environ. Health A, 73, pp. 1211-1219
  • Volesky, B., Biosorption by fungal biomass (1990) Biosorption of Heavy Metals, pp. 139-172. , CRC Press, New York, B. Volesky (Ed.)
  • Wang, L., Chen, G.-Q., Zeng, G.-M., Zhang, W.-J., Fan, J.-Q., Shen, G.-L., Extracellular polymeric substances (EPS) of white-rot fungus and their effects on Pb2+ adsorption by biomass (2011) Huanjing Kexue/Environ. Sci., 32, pp. 773-778
  • Wong, D.W.S., Structure and action mechanism of ligninolytic enzymes (2009) Appl. Biochem. Biotechnol., 157, pp. 174-209
  • Xiao, Y., Chen, Q., Hang, J., Shi, Y., Wu, J., Hong, Y., Wang, Y., Selective induction, purification and characterization of a laccase isozyme from the basidiomycete Trametes sp. AH28-2 (2004) Mycologia, 96, pp. 26-35

Citas:

---------- APA ----------
Kuhar, F. & Papinutti, L. (2013) . Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum. Journal of Environmental Management, 124, 1-7.
http://dx.doi.org/10.1016/j.jenvman.2013.03.040
---------- CHICAGO ----------
Kuhar, F., Papinutti, L. "Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum" . Journal of Environmental Management 124 (2013) : 1-7.
http://dx.doi.org/10.1016/j.jenvman.2013.03.040
---------- MLA ----------
Kuhar, F., Papinutti, L. "Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum" . Journal of Environmental Management, vol. 124, 2013, pp. 1-7.
http://dx.doi.org/10.1016/j.jenvman.2013.03.040
---------- VANCOUVER ----------
Kuhar, F., Papinutti, L. Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum. J. Environ. Manage. 2013;124:1-7.
http://dx.doi.org/10.1016/j.jenvman.2013.03.040