Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work we present a kinetic model for the NO + NH3 reaction on Pt{1 0 0}. The model is based upon theoretical and experimental findings that indicate that the dominant reaction pathway leading to NH3 decomposition is via direct abstraction of an H atom from adsorbed ammonia via adsorbed oxygen or OH. The temporal evolution of the dynamic defects that are created during the phase transition is also explicitly introduced in the model. The important role of the average concentration of defects has been shown in experiments of forcing on the NO + CO reaction on Pt{1 0 0}. In the present work we show that the role of such defects is also important in determining the characteristics of the oscillatory regime of the NO + NH3 reaction on Pt{1 0 0}. The predictions of the model agree with experimental results significantly better than previous mean-field models. © 2005 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Mathematical modeling of the NH3 + NO reaction on Pt{1 0 0}
Autor:Irurzun, I.M.; Mola, E.E.; Imbihl, R.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla Correo 314, 1900 La Plata, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Buenos Aires, Argentina
Institut für Physikalische Chemie und Elektrochemie, Universität Hannover, Hannover, Germany
Palabras clave:Catalysis; Kinetics; Mean-field
Año:2006
Volumen:323
Número:2-3
Página de inicio:295
Página de fin:303
DOI: http://dx.doi.org/10.1016/j.chemphys.2005.09.022
Título revista:Chemical Physics
Título revista abreviado:Chem. Phys.
ISSN:03010104
CODEN:CMPHC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03010104_v323_n2-3_p295_Irurzun

Referencias:

  • Egelhoff, W.F., (1982) The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, 4. , King D.A., and Woodruff D.P. (Eds), Elsevier, Amsterdam
  • Shelef, M., (1975) Catal. Rev. Sci. Eng., 11
  • Lombardo, S.J., Fink, T., Imbihl, R., (1993) J. Chem. Phys., 98, p. 5526
  • Takoudis, C.G., Schmidt, L.D., (1983) J. Phys. Chem., 87, p. 958
  • Katona, T., Somorjai, G.A., (1992) J. Phys. Chem., 96, p. 5465
  • Lombardo, S.J., Esch, F., Imbihl, R., (1992) Surf. Sci., 271, pp. L367
  • Lombardo, S.J., Slinko, M., Fink, T., Löher, T., Madden, H.H., Imbihl, R., Esch, F., Ertl, G., (1992) Surf. Sci., 269-270, p. 481
  • Veser, G., Esch, F., Imbihl, R., (1993) Catal. Lett., 13, p. 371
  • Uecker, H., Imbihl, R., Rafti, M., Irurzun, I.M., Vicente, J.L., Mola, E.E., (2003) Chem. Phys. Lett., 382, p. 232
  • Uecker, H., (2003) Physica D, 190, p. 249
  • Irurzun, I.M., Imbihl, R., Vicente, J.L., Mola, E.E., (2004) Chem. Phys. Lett., 389, p. 212
  • Uecker, H., (2005) Phys. Rev. E, 71, p. 016207
  • Bradley, J.M., Pasteur, A.T., King, D.A., (1996) J. Chem. Soc., Faraday Trans., 92, p. 2941
  • Bradley, J.M., Hopkinson, A., King, D.A., (1997) Surf. Sci., 371, p. 255
  • Walker, A.V., Gruyters, M., King, D.A., (1997) Surf. Sci. Lett., 384, pp. L791
  • Guthrie, W.L., Sokol, J.D., Somorjai, G.A., (1981) Surf. Sci., 109, p. 390
  • Scheibe, A., Hinz, M., Imbihl, R., (2005) Surf. Sci., 576, p. 131
  • Schultz, E., Imbihl, R., (2002) Z. Phys. Chem., 216, p. 509
  • Michev, W.D., Ho, W., (1995) Surf. Sci., 322, p. 151
  • Gruyters, M., Pasteur, A.T., King, D.A., (1996) J. Chem. Soc., Faraday Trans., 92, p. 2941
  • Fink, T., Dath, J.P., Basset, M.R., Imbihl, R., Ertl, G., (1991) Surf. Sci., 245, p. 96
  • Fink, T., Dath, J.P., Imbihl, R., Ertl, G., (1991) J. Chem. Phys., 95, p. 2109
  • Griffiths, K., Jackman, T.E., Davies, J.A., Norton, P.R., (1990) Surf. Sci., 204, p. 112
  • Gorte, R.J., Schmidt, L.D., Gland, J.L., (1981) Surf. Sci., 109, p. 367
  • Gohndrone, J.M., Olsen, W., Backman, A.L., Grow, T.R., Yagasaki, E., Masel, R.I., (1989) J. Vac. Sci. Technol. A, 7, p. 1986
  • Ertl, G., (1983) Catalysis Science and Technology, 4. , Anderson J.R., and Boudart M. (Eds), Springer, Berlin (Chapter 3)
  • Schwaha, K., Berthold, E., (1977) Surf. Sci., 66, p. 383
  • Lu, K.E., Rye, R.R., (1974) Surf. Sci., 45, p. 677
  • Heinz, K., Lang, E., Strauss, K., Muller, K., (1982) Appl. Surf. Sci., 11-12, p. 611
  • Fisher, G.B., (1981) Chem. Phys. Lett., 79, p. 452
  • Tamaro, M., Evans, J.W., Rastomjee, C.S., Swiech, W., Bradshaw, A.M., Imbihl, R., (1998) Surf. Sci., 407, p. 162

Citas:

---------- APA ----------
Irurzun, I.M., Mola, E.E. & Imbihl, R. (2006) . Mathematical modeling of the NH3 + NO reaction on Pt{1 0 0}. Chemical Physics, 323(2-3), 295-303.
http://dx.doi.org/10.1016/j.chemphys.2005.09.022
---------- CHICAGO ----------
Irurzun, I.M., Mola, E.E., Imbihl, R. "Mathematical modeling of the NH3 + NO reaction on Pt{1 0 0}" . Chemical Physics 323, no. 2-3 (2006) : 295-303.
http://dx.doi.org/10.1016/j.chemphys.2005.09.022
---------- MLA ----------
Irurzun, I.M., Mola, E.E., Imbihl, R. "Mathematical modeling of the NH3 + NO reaction on Pt{1 0 0}" . Chemical Physics, vol. 323, no. 2-3, 2006, pp. 295-303.
http://dx.doi.org/10.1016/j.chemphys.2005.09.022
---------- VANCOUVER ----------
Irurzun, I.M., Mola, E.E., Imbihl, R. Mathematical modeling of the NH3 + NO reaction on Pt{1 0 0}. Chem. Phys. 2006;323(2-3):295-303.
http://dx.doi.org/10.1016/j.chemphys.2005.09.022