Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We have previously reported that ACTH activates a phospholipase C that hydrolyzes glycosylphosphatidylinositol (GPI), which would release inositolphosphoglycan (IPG) to the extracellular medium, and that an IPG purified from Trypanosoma cruzi is able to inhibit ACTH-mediated steroid production in adrenocortical cells. In the present paper, it was found that anti-inositolphosphoglycan antibodies (anti-CRD) increased ACTH-mediated corticosterone production, which indicates that an endogenous IPG is a physiological inhibitor of ACTH response. On the other hand, we investigated the release to the extracellular medium of the GPI-anchored enzyme, alkaline phosphatase, by ACTH. We found that: (a) the released enzyme appeared in the aqueous phase after Triton X-114 partitioning, consistent with loss of the GPI, (b) the phospholipase C inhibitor, U73122, impaired the release of the enzyme by the hormone and (c) two inhibitors of IPG uptake, inositol 2-monophosphate and 2 M NaCl, increased the amount of alkaline phosphatase in the extracellular medium. These results suggest that ACTH releases alkaline phosphatase by activation of a phospholipase C. Dibutyryladenosine-3′,5′-cyclic monophosphate (db-cAMP) was able to increase the release of alkaline phosphatase from adrenocortical cells and this effect was inhibited by U73122, suggesting that cAMP is involved in the activation of phospholipase C. In addition, it was found that a pertussis-toxin sensitive G-protein is required for ACTH- and db-cAMP-mediated release of alkaline phosphatase and that incorporation of anti-Gi antibodies in adrenocortical cells inhibited the release of alkaline phosphatase by ACTH. Our results suggest that ACTH increases the release of alkaline phosphatase by activation of a phospholipase C through cAMP and Gi which would contribute to produce IPG. It was also found that the two inhibitors of IPG uptake, inositol-2-monophosphate and 2 M NaCl, increased the amount of alkaline phosphatase in the extracellular medium of ACTH-treated cells more than in control cells, indicating that ACTH also stimulates the uptake of IPG. These data support a role of GPI and the involvement of Gi in ACTH action. © 2004 Kluwer Academic Publishers.

Registro:

Documento: Artículo
Título:ACTH stimulates the release of alkaline phosphatase through Gi-mediated activation of a phospholipase C and the release of inositolphosphoglycan
Autor:Martini, C.N.; Vaena de Avalos, S.G.; del Carmen Vila, M.
Filiación:Departamento de Quimica Biologica, Fac. de Ciencias Exactas/Naturales, Universidad de Buenos Aires, Pabellón 2, 1428 Buenos Aires, Argentina
Fac. de Cie. Exact./Quim. Nat., Universidad de Morón, Buenos Aires, Argentina
Palabras clave:ACTH; Alkaline phosphate; Gi; Glycosylphosphatidylinositol (GPI); Phospholipase C; Steroid biosynthesis; 1 [[6 (3 methoxyestra 1,3,5(10) trien 17beta yl)amino]hexyl] 1h pyrrole 2,5 dione; alkaline phosphatase; antibody; bucladesine; corticosterone; corticotropin; cyclic AMP; glycan derivative; glycosylphosphatidylinositol; guanine nucleotide binding protein; inhibitory guanine nucleotide binding protein; inositol phosphate; pertussis toxin; phospholipase C; phospholipase C inhibitor; sodium chloride; triton x 114; adrenal cortex cell; animal cell; article; cell culture; controlled study; culture medium; enzyme activation; enzyme release; extracellular fluid; hormone inhibition; hormone synthesis; male; nonhuman; phase partitioning; phospholipid synthesis; phospholipid transfer; protein function; rat; Adrenal Glands; Adrenocorticotropic Hormone; Alkaline Phosphatase; Animals; Bucladesine; Cells, Cultured; Enzyme Activation; Enzyme Inhibitors; Glycosylphosphatidylinositols; GTP-Binding Protein alpha Subunit, Gi2; GTP-Binding Protein alpha Subunits, Gi-Go; Inositol Phosphates; Male; Oligosaccharides; Phospholipase C; Polysaccharides; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Signal Transduction; Trypanosoma; Trypanosoma cruzi
Año:2004
Volumen:258
Número:1-2
Página de inicio:191
Página de fin:199
DOI: http://dx.doi.org/10.1023/B:MCBI.0000012855.94291.dd
Título revista:Molecular and Cellular Biochemistry
Título revista abreviado:Mol. Cell. Biochem.
ISSN:03008177
CODEN:MCBIB
CAS:1 [[6 (3 methoxyestra 1,3,5(10) trien 17beta yl)amino]hexyl] 1h pyrrole 2,5 dione, 112648-68-7; alkaline phosphatase, 9001-78-9; bucladesine, 16980-89-5, 362-74-3; corticosterone, 50-22-6; corticotropin, 11136-52-0, 9002-60-2, 9061-27-2; cyclic AMP, 60-92-4; inositol phosphate, 15421-51-9; pertussis toxin, 70323-44-3; phospholipase C, 9001-86-9; sodium chloride, 7647-14-5; triton x 114, 9036-19-5, 9063-89-2; Adrenocorticotropic Hormone, 9002-60-2; Alkaline Phosphatase, EC 3.1.3.1; Bucladesine, 362-74-3; Enzyme Inhibitors; Glycosylphosphatidylinositols; Gnai2 protein, rat, EC 3.6.1.46; GTP-Binding Protein alpha Subunit, Gi2, EC 3.6.1.46; GTP-Binding Protein alpha Subunits, Gi-Go, EC 3.6.1.46; inositol phosphate glycan; Inositol Phosphates; Oligosaccharides; Phospholipase C, EC 3.1.4.3; Polysaccharides; Proto-Oncogene Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03008177_v258_n1-2_p191_Martini

Referencias:

  • LeHoux, J.G., Bernard, H., Ducharme, L., Lefebvre, A., Shapcott, D., Tremblay, A., Veronneau, S., (1996) Advances in Molecular and Cell Biology, 14, pp. 149-201. , C.R. Jefcoate (ed). J.A.I. Press, London
  • Bird, I., Walker, S., Williams, B., Agonist-stimulated turnover of the phosphoinositides and the regulation of adrenocortical steroidogenesis (1990) J. Mol. Endocrinol., 5, pp. 191-209
  • Vilgrain, I., Cochet, C., Chambaz, E., Hormonal regulation of a calcium-activated, phospholipid-dependent protein kinase in bovine adrenal cortex (1984) J. Biol. Chem., 259, pp. 3403-3406
  • Papadopoulos, V., Brown, A., Hall, P., Calcium-calmodulin-dependent phosphorylation of cytoskeletal proteins from adrenal cells (1990) Mol. Cell Endocrinol., 74, pp. 109-123
  • Gallo-Payet, N., Cote, M., Chorvatova, A., Guillon, G., Payet, M., Cyclic AMP-independent effects of ACTH on glomerulosa cells of the rat adrenal cortex (1999) J. Steroid Biochem. Mol. Biol., 69, pp. 335-342
  • Stevens, V., Biosynthesis of glycosylphosphatidylinositol membrane anchors (1995) Biochem. J., 310, pp. 361-370
  • Ferguson, M., The structure, biosynthesis and function of glycosyl-phosphatidylinositol anchors, and the contributions of Trypanosome research (1999) J. Cell Sci., 112, pp. 2799-2809
  • Singh, N., Liang, L., Tykocinscki, M., Tartakoff, A., A novel class of cell surface glycolipids of mammalian cells (1996) J. Biol. Chem., 271, pp. 12879-12884
  • Jones, D., Varela-Nieto, I., The role of glycosyl-phosphatidylinositol in signal transduction (1998) Int. J. Biochem. Cell Biol., 30, pp. 313-326
  • Saltiel, A., The paradoxical regulation of protein phosphorylation in insulin action (1994) FASEB J., 8, pp. 1034-1040
  • Susuki, S., Taneda, Y., Hirai, S., Satoh, Y., Toyota, T., Insulin stimulates hydrolysis of plasmanylinositol-glycan and phosphatidylinositol-glycan in rat adipocytes. Insulin-induced generation of inositol glycan, alkylacylglycerol and diacylglycerol (1993) Diabetes, 42, pp. 988-994
  • Cozza, E., Vila, M., Gomez-Sanchez, C., Farese, R., ACTH stimulates turnover of the phosphatidylinositol-glycan (1988) Biochem. Biophys. Res. Commun., 157, pp. 585-589
  • Bogdanowicz, P., Pujol, J., Glycosylphosphatidylinositol (GPI) hydrolysis by transforming growth factor-beta1 (TGF-beta1) as a potential early step in the inhibition of epithelial cell proliferation (2000) Mol. Cell Biochem., 208, pp. 143-150
  • Romero, G., Gamez, G., Huang, L., Lilley, K., Luttrell, L., Anti-inositolglycan antibodies selectively block some of the actions of insulin in intact BC3 H1 cells (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 1476-1480
  • Deeg, M., Brass, E., Rosenberry, T., Inositolglycan phosphate derived from human erythrocyte acetylcholinesterase glycolipid anchor and inositol cyclic 1,2-phosphate antagonize glucagon activation of glycogen phosphorylase (1993) Diabetes, 42, pp. 1318-1323
  • Frick, W., Bauer, A., Bauer, J., Wied, S., Müller, G., Insulin-mimetic signalling of synthetic phosphoinositolglycans in isolated rat adipocytes (1998) Biochem. J., 336, pp. 163-181
  • Vila, M., Milligan, G., Standaert, M., Farese, R., Insulin activates glycerol-3-phosphate acyltransferase (de novo phosphatidic acid synthesis) through a phospholipid-derived mediator. Apparent involvement of Gi and activation of a phospholipase C (1990) Biochemistry, 29, pp. 8735-8740
  • Vila, M., Farese, R., Insulin rapidly increases glycerol-3-phosphate acyltransferase activity in rat adipocytes (1991) Arch. Biochem. Biophys., 284, pp. 366-368
  • Müller, G., Wied, S., Crecelius, A., Kessler, A., Eckel, J., Phosphoinositolglycan-peptides from yeast potently induce metabolic actions in isolated rat adipocytes, cardiomyocytes, and diaphragms (1997) Endocrinology, 138, pp. 3459-3475
  • Luttrell, L., Hewlett, E., Romero, G., Rogol, A., Pertussis toxin treatment attenuates some effects of insulin in BC3H-1 murine myocytes (1988) J. Biol. Chem., 263, pp. 6134-6141
  • Movahedi, S., Hooper, N., Insulin stimulates the release of the glycosyl phosphatidylinositol-anchored membrane dipeptidase from 3T3-L1 adipocytes through the action of a phospholipase C (1997) Biochem. J., 326, pp. 531-537
  • Alvarez, J., Sanchez-Arias, J., Guadaño, A., Estevez, F., Varela, I., Feliu, J., Mato, J., Transport in isolated rat hepatocytes of the phospho-oligosaccharide that mimics insulin action. Effects of adrenalectomy and glucocorticoid treatment (1991) Biochem. J., 274, pp. 369-374
  • Müller, G., Wetekam, E., Jung, C., Bandlow, W., Membrane association of lipoprotein lipase and a cAMP-binding ectoprotein in rat adipocytes (1994) Biochemistry, 33, pp. 12149-12159
  • Igarashi, Y., Chambaz, E., A novel inositolglycophospholipid and the serum dependence of its metabolism in bovine adrenocortical cells (1987) Biochem. Biophys. Res. Commun., 145, pp. 249-256
  • Lederkremer, R., Lima, C., Ramirez, M., Casal, O., Structural features of lipopeptidophosphoglycan from Trypanosoma cruzi common with glycophosphatidylinositol anchors (1990) Eur. J. Biochem., 192, pp. 337-345
  • Lederkremer, R., Lima, C., Ramirez, M., Ferguson, M., Homans, S., Thomas-Oates, J., Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi epimastigotes (1991) J. Biol. Chem., 266, pp. 23670-23675
  • Vila, M., Cozza, E., Ramirez, M., Lima, C., Lederkremer, R., An inositol phosphoglycan from Trypanosoma cruzi inhibits ACTH action in calf adrenocortical cells (1995) Cell Signal, 7, pp. 331-339
  • Avalos, S., Lima, C., Martini, C., Lederkremer, R., Vila, M., ACTH-mediated glucocorticoid and mineralocorticoid production is inhibited by an inositolphosphoglycan and a glycosylphosphatidylinositol-phospholipase C is activated by the hormone in mammalian adrenocortical cells (1998) Steroids, 63, pp. 70-75
  • Saltiel, A., Insulin generates an enzyme modulator from hepatic plasma membranes: Regulation of adenosine3′,5′-monophosphate phosphodiesterase, pyruvate dehydrogenase and adenylate cyclase (1987) Endocrinology, 120, pp. 967-972
  • Villalba, M., Kelly, K., Mato, J., Inhibition of cyclic AMP-dependent protein kinase by the polar head group of an insulin-sensitive glycophospholipid (1988) Biochim. Biophys. Acta, 968, pp. 69-76
  • Gomez-Sanchez, C., Murry, B., Kem, D., Kaplan, N., A direct radioimmunoassay of serum corticosterone in the rat (1975) Endocrinology, 96, pp. 796-798
  • Bordier, C., Phase separation of integral membrane proteins in Triton X-114 solution (1981) J. Biol. Chem., 256, pp. 1604-1607
  • Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Analytical Biochem., 72, pp. 248-254
  • Laemmli, U., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1979) Nature, 227, pp. 680-685
  • Sakata, N., Stoops, J., Dixon, J., Cytosolic components are required for proteasomal degradation of newly synthesized apolipoprotein B in permeabilized HepG2 cells (1999) J. Biol. Chem., 274, pp. 17068-17074
  • Zamze, S., Ferguson, M., Collins, R., Dwek, R., Rademacher, T., Characterization of the cross-reacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein (1988) Eur. J. Biochem., 176, pp. 527-534
  • Butikofer, P., Boschung, M., Brodbeck, U., Menon, A., Phosphatidylinositol hydrolysis by Trypanosoma brucei glycosylphosphatidylinositol phospholipase C (1996) J. Biol. Chem., 271, pp. 15533-15541
  • Boudot, C., Kadri, Z., Petitfrere, E., Lambert, E., Chretien, S., Mayeux, P., Haye, B., Billat, C., Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells (2002) Cell Signal, 14, pp. 869-878
  • Yule, D., Williams, J., U 73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not to JMV-180 in rat pancreatic acinar cells (1992) J. Biol. Chem., 267, pp. 13830-13835
  • Waldron, R., Rozengurt, E., Oxidative stress induces protein kinase D activation in intact cells. Involvement of Src and dependence on protein kinase C (2000) J. Biol. Chem., 275, pp. 17114-17121
  • Roberts, J., Kenton, P., Jhonson, P., Growth factor-induced release of a glycosyl-phosphatidylinositol(GPI)-linked protein from HEp-2 human carcinoma cell line (1990) FEBS Lett., 267, pp. 213-216
  • Müller, G., Hanekop, N., Kramer, W., Bandlow, W., Frick, W., Interaction of phosphoinositolglycan(-peptides) with plasma membranes lipid rafts of rat adipocytes (2002) Arch. Biochem. Biophys., 408, pp. 17-32
  • Saltiel, A., Sorbara-Cazan, L., Inositol glycan mimics the action of insulin on glucose utilization in rat adipocytes (1987) Biochem. Biophys. Res. Commun., 149, pp. 1084-1092
  • McKenzie, F., Kelly, E., Unson, C., Spiegel, A., Milligan, G., Antibodies which recognize the C-terminus of the inhibitory guanine-nucleotide-binding-protein (Gi) demonstrate that opioid peptides and foetal-calf serum stimulate the high-affinity GTPase activity of two separate pertussis-toxin substrates (1988) Biochem. J., 249, pp. 653-659
  • Strassheim, D., Milligan, G., Houslay, M., Diabetes abolish the GTP-dependent but not the receptor-dependent inhibitory function of the inhibitory guanine-nucleotide-binding regulatory protein (Gi) on adipocyte adenylate cyclase activity (1990) Biochem. J., 266, pp. 521-526
  • Park, S., Choi, K., Kim, I., Lee, H., Hooper, N., Park, H., Endogenous glycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro (2001) Biochem. J., 353, pp. 339-344
  • Han, M., Yim, C., An, N., Kim, H., Kim, U., Glycosylphosphatidylinositol-anchored NAD glycohydrolase is released from peritoneal macrophages activated by interferon-gamma and lipopolysaccharide (1994) J. Leukoc. Biol., 56, pp. 792-796
  • Miscia, S., Di Baldassarre, A., Cataldi, A., Rana, R.A., Di Valerio, V., Sabatino, G., Novel evidence of expression and activity of ecto-phospholipase C gamma1 in human T lymphocytes (1998) Blood, 91, pp. 3833-3840
  • Romero, G., Luttrell, L., Rogol, A., Zeller, K., Hewlett, E., Larner, J., Phosphatidylinositol-glycan anchors of membrane proteins: Potential precursors of insulin mediators (1988) Science, 240, pp. 509-511
  • Cote, M., Guillon, G., Payet, M., Gallo-Payet, N., Expression and regulation of adenylyl cyclase isoforms in the human adrenal gland (2001) J. Clin. Endocrinol. Metabolism, 86, pp. 4495-4503
  • Daaka, Y., Luttrell, L., Lefkowitz, L., Switching of the coupling of the β2-adrenergic receptor to different G-proteins by protein Kinase A (1997) Nature, 390, pp. 88-91
  • Soeder, K., Snedden, S., Cao, W., Della-Roca, G., Daniel, K., Luttrell, L., Collins, S., The β3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism (1999) J. Biol. Chem., 274, pp. 12017-12022
  • Luo, X., Zeng, W., Xu, X., Popov, S., Davignon, I., Wilkie, T., Mumby, S., Muallem, S., Alternate coupling of receptors to Gs and Gi in pancreatic and submandibular gland cells (1999) J. Biol. Chem., 274, pp. 17684-17690

Citas:

---------- APA ----------
Martini, C.N., Vaena de Avalos, S.G. & del Carmen Vila, M. (2004) . ACTH stimulates the release of alkaline phosphatase through Gi-mediated activation of a phospholipase C and the release of inositolphosphoglycan. Molecular and Cellular Biochemistry, 258(1-2), 191-199.
http://dx.doi.org/10.1023/B:MCBI.0000012855.94291.dd
---------- CHICAGO ----------
Martini, C.N., Vaena de Avalos, S.G., del Carmen Vila, M. "ACTH stimulates the release of alkaline phosphatase through Gi-mediated activation of a phospholipase C and the release of inositolphosphoglycan" . Molecular and Cellular Biochemistry 258, no. 1-2 (2004) : 191-199.
http://dx.doi.org/10.1023/B:MCBI.0000012855.94291.dd
---------- MLA ----------
Martini, C.N., Vaena de Avalos, S.G., del Carmen Vila, M. "ACTH stimulates the release of alkaline phosphatase through Gi-mediated activation of a phospholipase C and the release of inositolphosphoglycan" . Molecular and Cellular Biochemistry, vol. 258, no. 1-2, 2004, pp. 191-199.
http://dx.doi.org/10.1023/B:MCBI.0000012855.94291.dd
---------- VANCOUVER ----------
Martini, C.N., Vaena de Avalos, S.G., del Carmen Vila, M. ACTH stimulates the release of alkaline phosphatase through Gi-mediated activation of a phospholipase C and the release of inositolphosphoglycan. Mol. Cell. Biochem. 2004;258(1-2):191-199.
http://dx.doi.org/10.1023/B:MCBI.0000012855.94291.dd