Artículo

Mazaira, G.I.; Daneri-Becerra, C.; Zgajnar, N.R.; Lotufo, C.M.; Galigniana, M.D. "Gene expression regulation by heat-shock proteins: the cardinal roles of HSF1 and Hsp90" (2018) Biochemical Society Transactions. 46(1):51-65
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The ability to permit gene expression is managed by a set of relatively well known regulatory mechanisms. Nonetheless, this property can also be acquired during a life span as a consequence of environmental stimuli. Interestingly, some acquired information can be passed to the next generation of individuals without modifying gene information, but instead by the manner in which cells read and process such information. Molecular chaperones are classically related to the proper preservation of protein folding and anti-aggregation properties, but one of them, heat-shock protein 90 (Hsp90), is a refined sensor of protein function facilitating the biological activity of properly folded client proteins that already have a preserved tertiary structure. Interestingly, Hsp90 can also function as a critical switch able to regulate biological responses due to its association with key client proteins such as histone deacetylases or DNA methylases. Thus, a growing amount of evidence has connected the action of Hsp90 to post-translational modifications of soluble nuclear factors, DNA, and histones, which epigenetically affect gene expression upon the onset of an unfriendly environment. This response is commanded by the activation of the transcription factor heat-shock factor 1 (HSF1). Even though numerous stresses of diverse nature are known to trigger the stress response by activation of HSF1, it is still unknown whether there are different types of molecular sensors for each type of stimulus. In the present review, we will discuss various aspects of the regulatory action of HSF1 and Hsp90 on transcriptional regulation, and how this regulation may affect genetic assimilation mechanisms and the health of individuals. © 2018 The Author(s).

Registro:

Documento: Artículo
Título:Gene expression regulation by heat-shock proteins: the cardinal roles of HSF1 and Hsp90
Autor:Mazaira, G.I.; Daneri-Becerra, C.; Zgajnar, N.R.; Lotufo, C.M.; Galigniana, M.D.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, 1428, Argentina
Palabras clave:chaperone; heat shock protein 90; heat shock transcription factor 1; histone deacetylase 6; HDAC6 protein, human; heat shock protein 90; heat shock transcription factor; histone deacetylase 6; HSF1 protein, human; gene expression regulation; genetic variation; human; nonhuman; priority journal; protein processing; Review; stress; animal; gene expression regulation; genetic transcription; physiological stress; physiology; protein folding; Animals; Gene Expression Regulation; Genetic Variation; Heat Shock Transcription Factors; Histone Deacetylase 6; HSP90 Heat-Shock Proteins; Humans; Protein Folding; Protein Processing, Post-Translational; Stress, Physiological; Transcription, Genetic
Año:2018
Volumen:46
Número:1
Página de inicio:51
Página de fin:65
DOI: http://dx.doi.org/10.1042/BST20170335
Título revista:Biochemical Society Transactions
Título revista abreviado:Biochem. Soc. Trans.
ISSN:03005127
CODEN:BCSTB
CAS:HDAC6 protein, human; Heat Shock Transcription Factors; Histone Deacetylase 6; HSF1 protein, human; HSP90 Heat-Shock Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03005127_v46_n1_p51_Mazaira

Referencias:

  • Laskey, R.A., Honda, B.M., Mills, A.D., Finch, J.T., Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA (1978) Nature, 275, pp. 416-420. , https://doi.org/10.1038/275416a0
  • Balchin, D., Hayer-Hartl, M., Hartl, F.U., In vivo aspects of protein folding and quality control (2016) Science, 353, p. aac4354. , https://doi.org/10.1126/science.aac4354
  • Brandvold, K.R., Morimoto, R.I., The chemical biology of molecular chaperones—implications for modulation of proteostasis (2015) J. Mol. Biol., 427, pp. 2931-2947. , https://doi.org/10.1016/j.jmb.2015.05.010
  • Finka, A., Goloubinoff, P., Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis (2013) Cell Stress Chaperones, 18, pp. 591-605. , https://doi.org/10.1007/s12192-013-0413-3
  • Erlejman, A.G., Lagadari, M., Harris, D.C., Cox, M.B., Galigniana, M.D., Molecular chaperone activity and biological regulatory actions of the TPR-domain immunophilins FKBP51 and FKBP52 (2014) Curr. Protein Pept. Sci., 15, pp. 205-215. , https://doi.org/10.2174/1389203715666140331113753
  • Grad, I., Picard, D., The glucocorticoid responses are shaped by molecular chaperones (2007) Mol. Cell. Endocrinol., 275, pp. 2-12. , https://doi.org/10.1016/j.mce.2007.05.018
  • Pratt, W.B., Toft, D.O., Steroid receptor interactions with heat shock protein and immunophilin chaperones (1997) Endocr. Rev., 18, pp. 306-360. , https://doi.org/10.1210/edrv.18.3.0303
  • Lindquist, S., Protein folding sculpting evolutionary change (2009) Cold Spring Harb. Symp. Quant. Biol., 74, pp. 103-108. , https://doi.org/10.1101/sqb.2009.74.043
  • Walton-Diaz, A., Khan, S., Bourboulia, D., Trepel, J.B., Neckers, L., Mollapour, M., Contributions of co-chaperones and post-translational modifications towards Hsp90 drug sensitivity (2013) Future Med. Chem., 5, pp. 1059-1071. , https://doi.org/10.4155/fmc.13.88
  • Cho, H.-S., Shimazu, T., Toyokawa, G., Daigo, Y., Maehara, Y., Hayami, S., Enhanced HSP70 lysine methylation promotes proliferation of cancer cells through activation of Aurora kinase B (2012) Nat. Commun., 3, p. 1072. , https://doi.org/10.1038/ncomms2074
  • Cloutier, P., Lavallée-Adam, M., Faubert, D., Blanchette, M., Coulombe, B., A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity (2013) PLoS Genet, 9. , https://doi.org/10.1371/journal.pgen.1003210
  • Erlejman, A.G., Lagadari, M., Toneatto, J., Piwien-Pilipuk, G., Galigniana, M.D., Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression (2014) Biochim. Biophys. Acta Gene Regul. Mech., 1839, pp. 71-87. , https://doi.org/10.1016/j.bbagrm.2013.12.006
  • Moulick, K., Ahn, J.H., Zong, H., Rodina, A., Cerchietti, L., Gomes DaGama, E.M., Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90 (2011) Nat. Chem. Biol., 7, pp. 818-826. , https://doi.org/10.1038/nchembio.670
  • Echtenkamp, F.J., Freeman, B.C., Molecular chaperone-mediated nuclear protein dynamics (2014) Curr. Protein Pept. Sci., 15, pp. 216-224. , https://doi.org/10.2174/1389203715666140331112230
  • Rauch, J.N., Gestwicki, J.E., Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro (2014) J. Biol. Chem., 289, pp. 1402-1414. , https://doi.org/10.1074/jbc.M113.521997
  • Mollapour, M., Neckers, L., Post-translational modifications of Hsp90 and their contributions to chaperone regulation (2012) Biochim. Biophys. Acta Mol. Cell Res., 1823, pp. 648-655. , https://doi.org/10.1016/j.bbamcr.2011.07.018
  • Taipale, M., Tucker, G., Peng, J., Krykbaeva, I., Lin, Z.-Y., Larsen, B., A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways (2014) Cell, 158, pp. 434-448. , https://doi.org/10.1016/j.cell.2014.05.039
  • Cappello, F., de Macario, E.C., Marasà, L., Zummo, G., Macario, A.J.L., Hsp60 expression, new locations, functions, and perspectives for cancer diagnosis and therapy (2008) Cancer Biol. Ther., 7, pp. 801-809. , https://doi.org/10.4161/cbt.7.6.6281
  • Li, J., Richter, K., Reinstein, J., Buchner, J., Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle (2013) Nat. Struct. Mol. Biol., 20, pp. 326-331. , https://doi.org/10.1038/nsmb.2502
  • Alarcon, S.V., Mollapour, M., Lee, M.-J., Tsutsumi, S., Lee, S., Kim, Y.S., Tumor-intrinsic and tumor-extrinsic factors impacting hsp90-targeted therapy (2012) Curr. Mol. Med., 12, pp. 1125-1141. , https://doi.org/10.2174/156652412803306729
  • Schmid, T.E., Multhoff, G., Radiation-induced stress proteins - The role of heat shock proteins (HSP) in anti- Tumor responses (2012) Curr. Med. Chem., 19, pp. 1765-1770. , https://doi.org/10.2174/092986712800099767
  • Patel, P.D., Yan, P., Seidler, P.M., Patel, H.J., Sun, W., Yang, C., Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2 (2013) Nat. Chem. Biol., 9, pp. 677-684. , https://doi.org/10.1038/nchembio.1335
  • Elstrand, M.B., Kleinberg, L., Kohn, E.C., Tropé, C.G., Davidson, B., Expression and clinical role of antiapoptotic proteins of the bag, heat shock, and Bcl-2 families in effusions, primary tumors, and solid metastases in ovarian carcinoma (2009) Int. J. Gynecol. Pathol., 28, pp. 211-221. , https://doi.org/10.1097/PGP.0b013e31818b0f5e
  • Bottoni, P., Giardina, B., Scatena, R., Proteomic profiling of heat shock proteins: An emerging molecular approach with direct pathophysiological and clinical implications (2009) Proteomics Clin. Appl., 3, pp. 636-653. , https://doi.org/10.1002/prca.200800195
  • Kim, L.S., Kim, J.H., Heat shock protein as molecular targets for breast cancer therapeutics (2011) J. Breast Cancer, 14, pp. 167-174. , https://doi.org/10.4048/jbc.2011.14.3.167
  • Chuikov, S., Kurash, J.K., Wilson, J.R., Xiao, B., Justin, N., Ivanov, G.S., Regulation of p53 activity through lysine methylation (2004) Nature, 432, pp. 353-360. , https://doi.org/10.1038/nature03117
  • Hinds, T.D., Jr., Sánchez, E.R., Protein phosphatase 5 (2008) Int. J. Biochem. Cell Biol., 40, pp. 2358-2362. , https://doi.org/10.1016/j.biocel.2007.08.010
  • Silverstein, A.M., Galigniana, M.D., Chen, M.-S., Owens-Grillo, J.K., Chinkers, M., Pratt, W.B., Protein phosphatase 5 is a major component of glucocorticoid receptor·hsp90 complexes with properties of an FK506-binding immunophilin (1997) J. Biol. Chem., 272, pp. 16224-16230. , https://doi.org/10.1074/jbc.272.26.16224
  • Jarosz, D.F., Lindquist, S., Hsp90 and environmental stress transform the adaptive value of natural genetic variation (2010) Science, 330, pp. 1820-1824. , https://doi.org/10.1126/science.1195487
  • Taipale, M., Jarosz, D.F., Lindquist, S., HSP90 at the hub of protein homeostasis: Emerging mechanistic insights (2010) Nat. Rev. Mol. Cell Biol., 11, pp. 515-528. , https://doi.org/10.1038/nrm2918
  • Pigliucci, M., Epigenetics is back! Hsp90 and phenotypic variation (2003) Cell Cycle, 2, pp. 34-35. , https://doi.org/10.4161/cc.2.1.274
  • Waddington, C.H., Canalization of development and the inheritance of acquired characters (1942) Nature, 150, pp. 563-565. , https://doi.org/10.1038/150563a0
  • Queitsch, C., Sangster, T.A., Lindquist, S., Hsp90 as a capacitor of phenotypic variation (2002) Nature, 417, pp. 618-624. , https://doi.org/10.1038/nature749
  • Galigniana, M.D., Echeverría, P.C., Erlejman, A.G., Piwien-Pilipuk, G., Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore (2010) Nucleus, 1, pp. 299-308. , https://doi.org/10.4161/nucl.1.4.11743
  • Ni, L., Yang, C.-S., Gioeli, D., Frierson, H., Toft, D.O., Paschal, B.M., FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells (2010) Mol. Cell. Biol., 30, pp. 1243-1253. , https://doi.org/10.1128/MCB.01891-08
  • Saporita, A.J., Ai, J., Wang, Z., The Hsp90 inhibitor, 17-AAG, prevents the ligand-independent nuclear localization of androgen receptor in refractory prostate cancer cells (2007) Prostate, 67, pp. 509-520. , https://doi.org/10.1002/pros.20541
  • Boulon, S., Pradet-Balade, B., Verheggen, C., Molle, D., Boireau, S., Georgieva, M., HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II (2010) Mol. Cell, 39, pp. 912-924. , https://doi.org/10.1016/j.molcel.2010.08.023
  • Guertin, M.J., Lis, J.T., Chromatin landscape dictates HSF binding to target DNA elements (2010) PLoS Genet, 6. , https://doi.org/10.1371/journal.pgen.1001114
  • Lis, J.T., Mason, P., Peng, J., Price, D.H., Werner, J., P-TEFb kinase recruitment and function at heat shock loci (2000) Genes Dev, 14, pp. 792-803. , PMID:10766736
  • Dayalan Naidu, S., Dinkova-Kostova, A.T., Regulation of the mammalian heat shock factor 1 (2017) FEBS J, 284, pp. 1606-1627. , https://doi.org/10.1111/febs.13999
  • Vozzolo, L., Loh, B., Gane, P.J., Tribak, M., Zhou, L., Anderson, I., Gyrase B inhibitor impairs HIV-1 replication by targeting Hsp90 and the capsid protein (2010) J. Biol. Chem., 285, pp. 39314-39328. , https://doi.org/10.1074/jbc.M110.155275
  • Freeman, B.C., Yamamoto, K.R., Disassembly of transcriptional regulatory complexes by molecular chaperones (2002) Science, 296, pp. 2232-2235. , https://doi.org/10.1126/science.1073051
  • Floer, M., Bryant, G.O., Ptashne, M., HSP90/70 chaperones are required for rapid nucleosome removal upon induction of the GAL genes of yeast (2008) Proc. Natl Acad. Sci. U.S.A., 105, pp. 2975-2980. , https://doi.org/10.1073/pnas.0800053105
  • Schnaider, T., Somogyi, J., Csermely, P., Szamel, M., The Hsp90-specific inhibitor, geldanamycin, blocks CD28-mediated activation of human T lymphocytes (1998) Life Sci, 63, pp. 949-954. , https://doi.org/10.1016/S0024-3205(98)00352-X
  • Csermely, P., Kajtar, J., Hollosi, M., Oikarinen, J., Somogyi, J., The 90 kDa heat shock protein (hsp90) induces the condensation of the chromatin structure (1994) Biochem. Biophys. Res. Commun., 202, pp. 1657-1663. , https://doi.org/10.1006/bbrc.1994.2124
  • Labbadia, J., Cunliffe, H., Weiss, A., Katsyuba, E., Sathasivam, K., Seredenina, T., Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease (2011) J. Clin. Invest., 121, pp. 3306-3319. , https://doi.org/10.1172/JCI57413
  • Fukada, M., Hanai, A., Nakayama, A., Suzuki, T., Miyata, N., Rodriguiz, R.M., Loss of deacetylation activity of Hdac6 affects emotional behavior in mice (2012) PLoS ONE, 7. , https://doi.org/10.1371/journal.pone.0030924
  • Tariq, M., Nussbaumer, U., Chen, Y., Beisel, C., Paro, R., Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression (2009) Proc. Natl Acad. Sci. U.S.A., 106, pp. 1157-1162. , https://doi.org/10.1073/pnas.0809669106
  • Zhao, R., Houry, W.A., Hsp90: A chaperone for protein folding and gene regulation (2005) Biochem. Cell Biol., 83, pp. 703-710. , https://doi.org/10.1139/o05-158
  • Yun, M., Wu, J., Workman, J.L., Li, B., Readers of histone modifications (2011) Cell Res, 21, pp. 564-578. , https://doi.org/10.1038/cr.2011.42
  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Lysine acetylation targets protein complexes and co-regulates major cellular functions (2009) Science, 325, pp. 834-840. , https://doi.org/10.1126/science.1175371
  • Haberland, M., Montgomery, R.L., Olson, E.N., The many roles of histone deacetylases in development and physiology: Implications for disease and therapy (2009) Nat. Rev. Genet., 10, pp. 32-42. , https://doi.org/10.1038/nrg2485
  • Gallo, L.I., Ghini, A.A., Piwien Pilipuk, G., Galigniana, M.D., Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity (2007) Biochemistry, 46, pp. 14044-14057. , https://doi.org/10.1021/bi701372c
  • Rutherford, S.L., Lindquist, S., Hsp90 as a capacitor for morphological evolution (1998) Nature, 396, pp. 336-342. , https://doi.org/10.1038/24550
  • Galigniana, M.D., Steroid receptor coupling becomes nuclear (2012) Chem. Biol., 19, pp. 662-663. , https://doi.org/10.1016/j.chembiol.2012.06.001
  • Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., Piwien-Pilipuk, G., The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events (2010) Mol. Cell. Biol., 30, pp. 1285-1298. , https://doi.org/10.1128/MCB.01190-09
  • Galigniana, M.D., Radanyi, C., Renoir, J.-M., Housley, P.R., Pratt, W.B., Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus (2001) J. Biol. Chem., 276, pp. 14884-14889. , https://doi.org/10.1074/jbc.M010809200
  • Wochnik, G.M., Rüegg, J., Abel, G.A., Schmidt, U., Holsboer, F., Rein, T., FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells (2005) J. Biol. Chem., 280, pp. 4609-4616. , https://doi.org/10.1074/jbc.M407498200
  • Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.-T., Nicchitta, C.V., HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor (2005) Mol. Cell, 18, pp. 601-607. , https://doi.org/10.1016/j.molcel.2005.04.021
  • Murphy, P.J.M., Morishima, Y., Kovacs, J.J., Yao, T.-P., Pratt, W.B., Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone (2005) J. Biol. Chem., 280, pp. 33792-33799. , https://doi.org/10.1074/jbc.M506997200
  • Ai, J., Wang, Y., Dar, J.A., Liu, J., Liu, L., Nelson, J.B., HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer (2009) Mol. Endocrinol., 23, pp. 1963-1972. , https://doi.org/10.1210/me.2009-0188
  • Egger, G., Liang, G., Aparicio, A., Jones, P.A., Epigenetics in human disease and prospects for epigenetic therapy (2004) Nature, 429, pp. 457-463. , https://doi.org/10.1038/nature02625
  • Robertson, K.D., DNA methylation and chromatin – Unraveling the tangled web (2002) Oncogene, 21, pp. 5361-5379. , https://doi.org/10.1038/sj.onc.1205609
  • Feinberg, A.P., Vogelstein, B., Hypomethylation distinguishes genes of some human cancers from their normal counterparts (1983) Nature, 301, pp. 89-92. , https://doi.org/10.1038/301089a0
  • Jones, P.A., Baylin, S.B., The fundamental role of epigenetic events in cancer (2002) Nat. Rev. Genet., 3, pp. 415-428. , https://doi.org/10.1038/nrg816
  • Trepel, J., Mollapour, M., Giaccone, G., Neckers, L., Targeting the dynamic HSP90 complex in cancer (2010) Nat. Rev. Cancer, 10, pp. 537-549. , https://doi.org/10.1038/nrc2887
  • Csermely, P., Schnaider, T., Soti, C., Prohászka, Z., Nardai, G., The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review (1998) Pharmacol. Ther., 79, pp. 129-168. , https://doi.org/10.1016/S0163-7258(98)00013-8
  • Jang, H.S., Shin, W.J., Lee, J.E., Do, J.T., Cpg and non-CpG methylation in epigenetic gene regulation and brain function (2017) Genes, 8, p. E148. , https://doi.org/10.3390/genes8060148
  • Abu-Farha, M., Lambert, J.-P., Al-Madhoun, A.S., Elisma, F., Skerjanc, I.S., Figeys, D., The tale of two domains: Proteomics and genomics analysis of SMYD2, a new histone methyltransferase (2008) Mol. Cell. Proteomics, 7, pp. 560-572. , https://doi.org/10.1074/mcp.M700271-MCP200
  • Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells (2004) Nat. Cell Biol., 6, pp. 731-740. , https://doi.org/10.1038/ncb1151
  • Pernet, L., Faure, V., Gilquin, B., Dufour-Guerin, S., Khochbin, S., Vourc’h, C., HDAC6-ubiquitin interaction controls the duration of HSF1 activation after heat shock (2014) Mol. Biol. Cell, 25, pp. 4187-4194. , https://doi.org/10.1091/mbc.E14-06-1032
  • Lee, Y.-S., Lim, K.-H., Guo, X., Kawaguchi, Y., Gao, Y., Barrientos, T., The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis (2008) Cancer Res, 68, pp. 7561-7569. , https://doi.org/10.1158/0008-5472.CAN-08-0188
  • Pratt, W.B., The hsp90-based chaperone system: Involvement in signal transduction from a variety of hormone and growth factor receptors (1998) Proc. Soc. Exp. Biol. Med., 217, pp. 420-434. , https://doi.org/10.3181/00379727-217-44252
  • Hamm, C.A., Costa, F.F., Epigenomes as therapeutic targets (2015) Pharmacol. Ther., 151, pp. 72-86. , https://doi.org/10.1016/j.pharmthera.2015.03.003
  • Aldana-Masangkay, G.I., Sakamoto, K.M., The role of HDAC6 in cancer (2011) J. Biomed. Biotechnol., 2011, pp. 1-10. , https://doi.org/10.1155/2011/875824
  • Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., HDAC6 is a microtubule-associated deacetylase (2002) Nature, 417, pp. 455-458. , https://doi.org/10.1038/417455a
  • Hideshima, T., Bradner, J.E., Wong, J., Chauhan, D., Richardson, P., Schreiber, S.L., Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma (2005) Proc. Natl Acad. Sci. U.S.A., 102, pp. 8567-8572. , https://doi.org/10.1073/pnas.0503221102
  • Verdel, A., Curtet, S., Brocard, M.-P., Rousseaux, S., Lemercier, C., Yoshida, M., Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm (2000) Curr. Biol., 10, pp. 747-749. , https://doi.org/10.1016/S0960-9822(00)00542-X
  • Liu, Y., Peng, L., Seto, E., Huang, S., Qiu, Y., Modulation of histone deacetylase 6 (HDAC6) nuclear import and tubulin deacetylase activity through acetylation (2012) J. Biol. Chem., 287, pp. 29168-29174. , https://doi.org/10.1074/jbc.M112.371120
  • Gao, L., Cueto, M.A., Asselbergs, F., Atadja, P., Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family (2002) J. Biol. Chem., 277, pp. 25748-25755. , https://doi.org/10.1074/jbc.M111871200
  • Yoshida, N., Omoto, Y., Inoue, A., Eguchi, H., Kobayashi, Y., Kurosumi, M., Prediction of prognosis of estrogen receptor-positive breast cancer with combination of selected estrogen-regulated genes (2004) Cancer Sci, 95, pp. 496-502. , https://doi.org/10.1111/j.1349-7006.2004.tb03239.x
  • Caron, C., Boyault, C., Khochbin, S., Regulatory cross-talk between lysine acetylation and ubiquitination: Role in the control of protein stability (2005) BioEssays, 27, pp. 408-415. , https://doi.org/10.1002/bies.20210
  • Fernandes, I., Bastien, Y., Wai, T., Nygard, K., Lin, R., Cormier, O., Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms (2003) Mol. Cell, 11, pp. 139-150. , https://doi.org/10.1016/S1097-2765(03)00014-5
  • Amann, J.M., Nip, J., Strom, D.K., Lutterbach, B., Harada, H., Lenny, N., ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain (2001) Mol. Cell. Biol., 21, pp. 6470-6483. , https://doi.org/10.1128/MCB.21.19.6470-6483.2001
  • Westendorf, J.J., Zaidi, S.K., Cascino, J.E., Kahler, R., van Wijnen, A.J., Lian, J.B., Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21CIP1/WAF1 promoter (2002) Mol. Cell. Biol., 22, pp. 7982-7992. , https://doi.org/10.1128/MCB.22.22.7982-7992.2002
  • Zhang, W., Kone, B.C., NF-κB inhibits transcription of the H+-K+-ATPase α2-subunit gene: Role of histone deacetylases (2002) Am. J. Physiol. Renal Physiol., 283, pp. F904-F911. , https://doi.org/10.1152/ajprenal.00156.2002
  • Nusinzon, I., Horvath, C.M., Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation (2006) Mol. Cell. Biol., 26, pp. 3106-3113. , https://doi.org/10.1128/MCB.26.8.3106-3113.2006
  • Rodriguez-Gonzalez, A., Lin, T., Ikeda, A.K., Simms-Waldrip, T., Fu, C., Sakamoto, K.M., Role of the aggresome pathway in cancer: Targeting histone deacetylase 6-dependent protein degradation (2008) Cancer Res, 68, pp. 2557-2560. , https://doi.org/10.1158/0008-5472.CAN-07-5989
  • Boyault, C., Sadoul, K., Pabion, M., Khochbin, S., HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination (2007) Oncogene, 26, pp. 5468-5476. , https://doi.org/10.1038/sj.onc.1210614
  • Boyault, C., Gilquin, B., Zhang, Y., Rybin, V., Garman, E., Meyer-Klaucke, W., HDAC6–p97/VCP controlled polyubiquitin chain turnover (2006) EMBO J, 25, pp. 3357-3366. , https://doi.org/10.1038/sj.emboj.7601210
  • Chai, R.C., Vieusseux, J.L., Lang, B.J., Nguyen, C.H., Kouspou, M.M., Britt, K.L., Histone deacetylase activity mediates acquired resistance towards structurally diverse HSP90 inhibitors (2017) Mol. Oncol., 11, pp. 567-583. , https://doi.org/10.1002/1878-0261.12054
  • Anckar, J., Sistonen, L., Regulation of HSF1 function in the heat stress response: Implications in aging and disease (2011) Annu. Rev. Biochem., 80, pp. 1089-1115. , https://doi.org/10.1146/annurev-biochem-060809-095203

Citas:

---------- APA ----------
Mazaira, G.I., Daneri-Becerra, C., Zgajnar, N.R., Lotufo, C.M. & Galigniana, M.D. (2018) . Gene expression regulation by heat-shock proteins: the cardinal roles of HSF1 and Hsp90. Biochemical Society Transactions, 46(1), 51-65.
http://dx.doi.org/10.1042/BST20170335
---------- CHICAGO ----------
Mazaira, G.I., Daneri-Becerra, C., Zgajnar, N.R., Lotufo, C.M., Galigniana, M.D. "Gene expression regulation by heat-shock proteins: the cardinal roles of HSF1 and Hsp90" . Biochemical Society Transactions 46, no. 1 (2018) : 51-65.
http://dx.doi.org/10.1042/BST20170335
---------- MLA ----------
Mazaira, G.I., Daneri-Becerra, C., Zgajnar, N.R., Lotufo, C.M., Galigniana, M.D. "Gene expression regulation by heat-shock proteins: the cardinal roles of HSF1 and Hsp90" . Biochemical Society Transactions, vol. 46, no. 1, 2018, pp. 51-65.
http://dx.doi.org/10.1042/BST20170335
---------- VANCOUVER ----------
Mazaira, G.I., Daneri-Becerra, C., Zgajnar, N.R., Lotufo, C.M., Galigniana, M.D. Gene expression regulation by heat-shock proteins: the cardinal roles of HSF1 and Hsp90. Biochem. Soc. Trans. 2018;46(1):51-65.
http://dx.doi.org/10.1042/BST20170335