Artículo

Espada, R.; Parra, R.G.; Sippl, M.J.; Mora, T.; Walczak, A.M.; Ferreiro, D.U. "Repeat proteins challenge the concept of structural domains" (2015) Biochemical Society Transactions. 43:844-849
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Structural domains are believed to be modules within proteins that can fold and function independently. Some proteins show tandem repetitions of apparent modular structure that do not fold independently, but rather co-operate in stabilizing structural forms that comprise several repeat-units. For many natural repeat-proteins, it has been shown that weak energetic links between repeats lead to the breakdown of co-operativity and the appearance of folding sub-domains within an apparently regular repeat array. The quasi-1D architecture of repeat-proteins is crucial in detailing how the local energetic balances can modulate the folding dynamics of these proteins, which can be related to the physiological behaviour of these ubiquitous biological systems. © 2015 Authors; published by Portland Press Limited.

Registro:

Documento: Artículo
Título:Repeat proteins challenge the concept of structural domains
Autor:Espada, R.; Parra, R.G.; Sippl, M.J.; Mora, T.; Walczak, A.M.; Ferreiro, D.U.
Filiación:Protein Physiology Lab., Dep de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, C1430EGA, Argentina
Center of Applied Molecular Engineering, Division of Bioinformatics, Department of Molecular Biology, University of Salzburg, Salzburg, 5020, Austria
Laboratoire de Physique Statistique, CNRS, UPMC, Ecole Normale Supérieure, 24 rue Lhomond, Paris, 75005, France
Laboratoire de Physique Théorique, CNRS, UPMC, Ecole Normale Supérieure, 24 rue Lhomond, Paris, 75005, France
Palabras clave:Ankyrin-repeat; Local frustration; Repeat-protein; protein; repeat protein; unclassified drug; Article; molecular evolution; physiological process; priority journal; protein analysis; protein domain; protein folding; amino acid sequence; animal; chemical structure; energy transfer; human; protein conformation; protein domain; protein secondary structure; protein stability; protein tertiary structure; tandem repeat; Animals; Energy Transfer; Evolution, Molecular; Humans; Models, Molecular; Protein Conformation; Protein Folding; Protein Interaction Domains and Motifs; Protein Stability; Protein Structure, Secondary; Protein Structure, Tertiary; Repetitive Sequences, Amino Acid; Tandem Repeat Sequences
Año:2015
Volumen:43
Página de inicio:844
Página de fin:849
DOI: http://dx.doi.org/10.1042/BST20150083
Título revista:Biochemical Society Transactions
Título revista abreviado:Biochem. Soc. Trans.
ISSN:03005127
CODEN:BCSTB
CAS:protein, 67254-75-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03005127_v43_n_p844_Espada

Referencias:

  • Wetlaufer, D.B., Nucleation, rapid folding, and globular intrachain regions in proteins (1973) Proc. Natl. Acad. Sci. U.S.A., 70, pp. 697-701. , CrossRef PubMed
  • Nasir, A., Kim, K.M., Caetano-Anollés, G., Global patterns of protein domain gain and loss in superkingdoms (2014) PLoS Comput. Biol., 10, p. e1003452. , CrossRef PubMed
  • Jacob, F., Evolution and tinkering (1977) Science, 196, pp. 1161-1166. , CrossRef PubMed
  • Marcotte, E.M., Pellegrini, M., Yeates, T.O., Eisenberg, D., A census of protein repeats (1999) J. Mol. Biol., 293, pp. 151-160. , CrossRef PubMed
  • Ferreiro, D.U., Walczak, A.M., Komives, E.A., Wolynes, P.G., The energy landscapes of repeat-containing proteins: Topology, cooperativity, and the folding funnels of one-dimensional architectures (2008) PLoS Comput. Biol., 4, p. e1000070. , CrossRef PubMed
  • Luo, H., Nijveen, H., Understanding and identifying amino acid repeats (2014) Brief. Bioinform., 15, pp. 582-591. , CrossRef PubMed
  • Shih, E.S., Hwang, M.J., Alternative alignments from comparison of protein structures (2004) Proteins, 56, pp. 519-527. , CrossRef PubMed
  • Abraham, A.L., Rocha, E.P., Pothier, J., Swelfe: A detector of internal repeats in sequences and structures (2008) Bioinformatics, 24, pp. 1536-1537. , CrossRef PubMed
  • Walsh, I., Sirocco, F.G., Minervini, G., Di Domenico, T., Ferrari, C., Tosatto, S.C., RAPHAEL: Recognition, periodicity and insertion assignment of solenoid protein structures (2012) Bioinformatics, 28, pp. 3257-3264. , CrossRef PubMed
  • Di Domenico, T., Potenza, E., Walsh, I., Parra, R.G., Giollo, M., Minervini, G., Tosatto, S.C., RepeatsDB: A database of tandem repeat protein structures (2014) Nucleic Acids Res., 42, pp. D352-D357. , CrossRef PubMed
  • Kajava, A.V., Tandem repeats in proteins: From sequence to structure (2012) J. Struct. Biol., 179, pp. 279-288. , CrossRef PubMed
  • Schaper, E., Kajava, A.V., Hauser, A., Anisimova, M., Repeat or not repeat? - Statistical validation of tandem repeat prediction in genomic sequences (2012) Nucleic Acids Res., 40, pp. 10005-10017. , CrossRef PubMed
  • Parra, R.G., Espada, R., Sánchez, I.E., Sippl, M.J., Ferreiro, D.U., Detecting repetitions and periodicities in proteins by tiling the structural space (2013) J. Phys. Chem. B, 117, pp. 12887-12897. , CrossRef PubMed
  • Sippl, M.J., Wiederstein, M., A note on difficult structure alignment problems (2008) Bioinformatics, 24, pp. 426-427. , CrossRef PubMed
  • Sippl, M.J., On distance and similarity in fold space (2008) Bioinformatics, 24, pp. 872-873. , CrossRef PubMed
  • Tang, K.S., Fersht, A.R., Itzhaki, L.S., Sequential unfolding of ankyrin repeats in tumor suppressor p16 (2003) Structure, 11, pp. 67-73. , CrossRef PubMed
  • Lowe, A.R., Itzhaki, L.S., Biophysical characterisation of the small ankyrin repeat protein myotrophin (2007) J. Mol. Biol., 365, pp. 1245-1255. , CrossRef PubMed
  • Zeeb, M., Rosner, H., Zeslawski, W., Canet, D., Holak, T.A., Balbach, J., Protein folding and stability of human CDK inhibitor p19 INK4d (2002) J. Mol. Biol., 315, pp. 447-457. , CrossRef PubMed
  • Bradley, C.M., Barrick, D., Limits of cooperativity in a structurally modular protein: Response of the Notch ankyrin domain to analogous alanine substitutions in each repeat (2002) J. Mol. Biol., 324, pp. 373-386. , CrossRef PubMed
  • Ferreiro, D.U., Cervantes, C.F., Truhlar, S.M., Cho, S.S., Wolynes, P.G., Komives, E.A., Stabilizing IκBα by consensus design (2007) J. Mol. Biol., 365, pp. 1201-1216. , CrossRef PubMed
  • Ferreiro, D.U., Komives, E.A., Molecular mechanisms of system control of NF-κB signaling by IκBα (2010) Biochemistry, 49, pp. 1560-1567. , CrossRef PubMed
  • Truhlar, S.M., Mathes, E., Cervantes, C.F., Ghosh, G., Komives, E.A., Pre-folding IκBα alters control of NF-κB signaling (2008) J. Mol. Biol., 380, pp. 67-82. , CrossRef PubMed
  • Werbeck, N.D., Rowling, P.J., Chellamuthu, V.R., Itzhaki, L.S., Shifting transition states in the unfolding of a large ankyrin repeat protein (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 9982-9987. , CrossRef PubMed
  • Itzhaki, L.S., Lowe, A.R., From artificial antibodies to nanosprings: The biophysical properties of repeat proteins (2012) Adv. Exp. Med. Biol., 747, pp. 153-166. , CrossRef PubMed
  • Aksel, T., Barrick, D., Direct observation of parallel folding pathways revealed using a symmetric repeat protein system (2014) Biophys. J., 107, pp. 220-232. , CrossRef PubMed
  • Wetzel, S.K., Settanni, G., Kenig, M., Binz, H.K., Plückthun, A., Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins (2008) J. Mol. Biol., 376, pp. 241-257. , CrossRef PubMed
  • Ferreiro, D.U., Cho, S.S., Komives, E.A., Wolynes, P.G., The energy landscape of modular repeat proteins: Topology determines folding mechanism in the ankyrin family (2005) J. Mol. Biol., 354, pp. 679-692. , CrossRef PubMed
  • Hagai, T., Azia, A., Trizac, E., Levy, Y., Modulation of folding kinetics of repeat proteins: Interplay between intra and interdomain interactions (2012) Biophys. J., 103, pp. 1555-1565. , CrossRef PubMed
  • Javadi, Y., Main, E.R., Exploring the folding energy landscape of a series of designed consensus tetratricopeptide repeat proteins (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 17383-17388. , CrossRef PubMed
  • Tripp, K.W., Barrick, D., Rerouting the folding pathway of the Notch ankyrin domain by reshaping the energy landscape (2008) J. Am. Chem. Soc., 130, pp. 5681-5688. , CrossRef PubMed
  • Street, T.O., Barrick, D., Predicting repeat protein folding kinetics from an experimentally determined folding energy landscape (2009) Protein Sci., 18, pp. 58-68. , PubMed
  • Aksel, T., Barrick, D., Analysis of repeat protein folding using nearest neighbor statistical mechanical models (2009) Methods Enzymol., 455, pp. 95-125. , CrossRef PubMed
  • Ferreiro, D.U., Komives, E.A., The plastic landscape of repeat proteins (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 7735-7736. , CrossRef PubMed
  • Schafer, N.P., Hoffman, R.M., Burger, A., Craig, P.O., Komives, E.A., Wolynes, P.G., Discrete kinetic models from funneled energy landscape simulations (2012) PLoS One, 7, p. e50635. , CrossRef PubMed
  • Ferreiro, D.U., Komives, E.A., Wolynes, P.G., Frustration in biomolecules (2014) Q. Rev. Biophys., 47, pp. 285-363. , CrossRef PubMed
  • Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G., Localizing frustration in native proteins and protein assemblies (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 19819-19824. , CrossRef PubMed
  • Panchenko, A.R., Luthey-Schulten, Z., Wolynes, P.G., Foldons, protein structural modules, and exons (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 2008-2013. , CrossRef PubMed
  • Schafer, N.P., Kim, B.L., Zheng, W., Wolynes, P.G., Learning to fold proteins using energy landscape theory (2014) Isr. J. Chem., 54, pp. 1311-1337. , CrossRef PubMed
  • Tsai, C.J., Maizel, J.V., Nussinov, R., Anatomy of protein structures: Visualizing how a one-dimensional protein chain folds into a three-dimensional shape (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 12038-12043. , CrossRef PubMed
  • Lamboy, J.A., Kim, H., Dembinski, H., Ha, T., Komives, E.A., Single-molecule FRET reveals the native-state dynamics of the IκBα ankyrin repeat domain (2013) J. Mol. Biol., 425, pp. 2578-2590. , CrossRef PubMed
  • Sivanandan, S., Naganathan, A.N., A disorder-induced domino-like destabilization mechanism governs the folding and functional dynamics of the repeat protein iκbα (2013) PLoS Comput Biol., 9, p. e1003403. , CrossRef PubMed
  • Neher, E., How frequent are correlated changes in families of protein sequences? (1994) Proc. Natl. Acad. Sci. U.S.A., 91, pp. 98-102. , CrossRef PubMed
  • Weigt, M., White, R.A., Szurmant, H., Hoch, J.A., Hwa, T., Identification of direct residue contacts in protein-protein interaction by message passing (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 67-72. , CrossRef PubMed
  • Mora, T., Walczak, A.M., Bialek, W., Callan, C.G., Maximum entropy models for antibody diversity (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 5405-5410. , CrossRef PubMed
  • Morcos, F., Hwa, T., Onuchic, J.N., Weigt, M., Direct coupling analysis for protein contact prediction (2014) Methods Mol. Biol., 1137, pp. 55-70. , CrossRef PubMed
  • Sulkowska, J.I., Morcos, F., Weigt, M., Hwa, T., Onuchic, J.N., Genomics-aided structure prediction (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 10340-10345. , CrossRef PubMed
  • Marks, D.S., Colwell, L.J., Sheridan, R., Hopf, T.A., Pagnani, A., Zecchina, R., Sander, C., Protein 3D structure computed from evolutionary sequence variation (2011) PLoS One, 6, p. e28766. , CrossRef PubMed
  • Cheng, R.R., Morcos, F., Levine, H., Onuchic, J.N., Toward rationally redesigning bacterial two-component signaling systems using coevolutionary information (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. E563-E571. , CrossRef PubMed
  • Lui, S., Tiana, G., The network of stabilizing contacts in proteins studied by coevolutionary data (2013) J. Chem. Phys., 139, p. 155103. , CrossRef PubMed
  • Espada, R., Parra, R.G., Mora, T., Walczak, A.M., Ferreiro, D.U., Capturing coevolutionary signals in repeat proteins (2015) BMC Bioinformatics
  • Morcos, F., Schafer, N.P., Cheng, R.R., Onuchic, J.N., Wolynes, P.G., Coevolutionary information, protein folding landscapes, and the thermodynamics of natural selection (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. 12408-12413. , CrossRef PubMed

Citas:

---------- APA ----------
Espada, R., Parra, R.G., Sippl, M.J., Mora, T., Walczak, A.M. & Ferreiro, D.U. (2015) . Repeat proteins challenge the concept of structural domains. Biochemical Society Transactions, 43, 844-849.
http://dx.doi.org/10.1042/BST20150083
---------- CHICAGO ----------
Espada, R., Parra, R.G., Sippl, M.J., Mora, T., Walczak, A.M., Ferreiro, D.U. "Repeat proteins challenge the concept of structural domains" . Biochemical Society Transactions 43 (2015) : 844-849.
http://dx.doi.org/10.1042/BST20150083
---------- MLA ----------
Espada, R., Parra, R.G., Sippl, M.J., Mora, T., Walczak, A.M., Ferreiro, D.U. "Repeat proteins challenge the concept of structural domains" . Biochemical Society Transactions, vol. 43, 2015, pp. 844-849.
http://dx.doi.org/10.1042/BST20150083
---------- VANCOUVER ----------
Espada, R., Parra, R.G., Sippl, M.J., Mora, T., Walczak, A.M., Ferreiro, D.U. Repeat proteins challenge the concept of structural domains. Biochem. Soc. Trans. 2015;43:844-849.
http://dx.doi.org/10.1042/BST20150083