Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this study, some biochemical features and the extent of inhibition induced by the organophosphorous pesticide azinphos-methyl on the cholinesterase (ChE) activity present in whole soft tissue of two freshwater invertebrate species, the gastropod Biomphalaria glabrata and the oligochaete Lumbriculus variegatus were investigated. Both invertebrate organisms presented marked differences in ChE activity, type of enzymes and subcellular location. Acetylthiocholine was the substrate preferred by B. glabrata ChE. The enzyme activity was located preferentially in the supernatant of 11,000 × g centrifugation and was inhibited by increasing concentrations of substrate but not by iso-OMPA. Results showed that there were progressive inhibitions of the enzyme activity, with values 21%, 59%, 72%, 76%, and 82% lower than the control at levels of 1, 10, 50, 100 and 1000 μM of eserine, respectively. In contrast, L. variegatus ChE activity was distributed both in the supernatant and pellet fractions, with values approximately 6 and 20 times higher than B. glabrata, respectively. Studies with butyrylthiocholine and iso-OMPA suggested that about 72% of the activity corresponded to butyrylcholinesterase. A strong enzyme inhibition (88-94%) was found at low eserine concentrations (1-10 μM). ChE activity from L. variegatus and B. glabrata was inhibited by in vivo exposure to azinphos-methyl suggesting that both species can form the oxon derivative of this pesticide. However, both invertebrate species showed a very different susceptibility to the insecticide. The NOEC and EIC50 values were 500 and 1000 times lower for L. variegatus than for B. glabrata, reflecting that the oligochaetes were much more sensitive organisms. A different pattern was also observed for the recovery of the enzymatic activity when the organisms were transferred to clean water. The recuperation process was faster for the oligochaetes than for the gastropods. Mortality was not observed in either of the experimental conditions assayed, not even at concentrations that induced 90% of ChE inhibition. The differences in substrate specificity, sensitivity to inhibitors, and subcellular location between the ChEs of B. glabrata and L. variegatus could be the main factors contributing to the differential susceptibility to azinphos-methyl ChE inhibition found in the present study. © 2006 Elsevier Ireland Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus
Autor:Kristoff, G.; Guerrero, N.V.; de D'Angelo, A.M.P.; Cochón, A.C.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina
LIBIQUIMA, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquen, Argentina
Palabras clave:Azinphos-methyl; Biomphalaria glabrata; Cholinesterase; Lumbriculus variegatus; acetylthiocholine; azinphos methyl; butyrylthiocholine; cholinesterase; insecticide; organophosphate pesticide; outer membrane protein C; physostigmine; water; animal experiment; annelid worm; article; Biomphalaria glabrata; cellular distribution; centrifugation; concentration (parameters); controlled study; enzyme activity; enzyme inhibition; enzyme specificity; freshwater environment; gastropod; invertebrate; lumbriculus variegatus; mortality; nonhuman; priority journal; soft tissue; supernatant; Animals; Azinphosmethyl; Biological Markers; Cholinesterase Inhibitors; Cholinesterases; Fresh Water; Insecticides; Oligochaeta; Snails; Species Specificity; Animalia; Annelida; Biomphalaria glabrata; Gastropoda; Invertebrata; Lumbriculus variegatus; Oligochaeta (Metazoa)
Año:2006
Volumen:222
Número:3
Página de inicio:185
Página de fin:194
DOI: http://dx.doi.org/10.1016/j.tox.2006.02.018
Título revista:Toxicology
Título revista abreviado:Toxicology
ISSN:0300483X
CODEN:TXCYA
CAS:acetylthiocholine, 1797-69-9, 4468-05-7; azinphos methyl, 86-50-0; butyrylthiocholine, 1866-16-6, 4555-00-4; cholinesterase, 9001-08-5; physostigmine, 57-47-6, 64-47-1; water, 7732-18-5; Azinphosmethyl, 86-50-0; Biological Markers; Cholinesterase Inhibitors; Cholinesterases, EC 3.1.1.8; Insecticides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0300483X_v222_n3_p185_Kristoff

Referencias:

  • Ankley, G.T., Collyard, S.A., Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to three species of freshwater benthic invertebrates (1995) Comp. Biochem. Physiol., 110 C, pp. 149-155
  • Basack, S.B., Oneto, M.L., Fuchs, J.S., Wood, E.J., Kesten, E.M., Esterases of Corbicula fluminea as biomarkers of exposure to organophosphorus pesticides (1998) Bull. Environ. Contam. Toxicol., 61, pp. 569-576
  • Bocquené, G., Roig, A., Fournier, D., Cholinesterases from the common oyster (Crassostrea gigas). Evidence for the presence of a soluble acetylcholinesterase insensitive to organophosphate and carbamate inhibitors (1997) FEBS Lett., 407, pp. 261-266
  • Chambers, J.E., Carr, R.L., Biochemical mechanisms contributing to species differences in insecticide toxicity (1995) Toxicology, 105, pp. 291-304
  • Cooper, N.L., Bidwell, J.R., Cholinesterase inhibition and impacts on behavior of the Asian clam, Corbicula fluminea, after exposure to an organophosphate insecticide (2006) Aquat. Toxicol., 76, pp. 258-267
  • Ellman, G.L., Courtney, K.D., Andres Jr., V., Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity (1961) Biochem. Pharmacol., 7, pp. 88-95
  • Day, K.E., Scott, I.M., Use of acetylcholinesterase activity to detect sublethal toxicity in stream invertebrates exposed to low concentrations of organophosphate insecticides (1990) Aquat. Toxicol., 18, pp. 101-113
  • Di Giulio, R.T., Benson, W.H., Sanders, B.M., Van Veld, P.A., Biochemical mechanisms: metabolism, adaptation, and toxicity (1995) Fundamentals of Aquatic Toxicology, pp. 523-561. , Rand G.M. (Ed), Taylor and Francis, Washington, DC
  • Doran, W.J., Cope, W.G., Rada, R.G., Sandheinrich, M.B., Acetylcholinesterase inhibition in the threeridge mussel (Amblema plicata) by chlorpyrifos: implications for biomonitoring (2001) Ecotoxicol. Environ. Saf., 49, pp. 91-98
  • Ferrari, A., Venturino, A., Pechen de D' Angelo, A.M., Time course of brain cholinesterase inhibition and recovery following acute and subacute azinphosmethyl, parathion and carbaryl exposure in the goldfish (Carassius auratus) (2004) Ecotoxicol. Environ. Saf., 57, pp. 420-425
  • Ferrari, A., Anguiano, O.L., Soleno, J., Venturino, A., Pechen de D' Angelo, A.M., Different susceptibility of two aquatic vertebrates (Oncorhynchus mykiss and Bufo arenarum) to azinphos methyl and carbaryl (2004) Comp. Biochem. Physiol., 139 C, pp. 239-243
  • Finney, D.J., (1971) Probit Analysis, , Cambridge University Press, Cambridge, UK
  • Fried, B., Sundar Rao, K., Sherma, J., Fatty acid composition of Biomphalaria glabrata (Gastropoda: Planorbidae) fed hen's egg yolk versus leaf lettuce (1992) Comp. Biochem. Physiol., 101 A, pp. 351-352
  • Fulton, M.H., Key, P.B., Acetylcholinesterase inhibition in estuarine fish and invertebrates as indicator of organophosphorus insecticide exposure and effects (2001) Environ. Toxicol. Chem., 20, pp. 37-45
  • Gruber, S.I., Munn, M.D., Organophosphate and carbamate insecticides in agricultural waters and cholinesterase (ChE) inhibition in common carp (Cyprinus carpio) (1998) Arch. Environ. Contam. Toxicol., 35, pp. 391-396
  • Huggett, R.J., Kimerle, R.A., Mehrie, P.M., Bergman, H.L., (1992) Biomarkers: Biochemical Physiological and Histological Markers of Anthropogenic Stress, , Lewis Publishers, London
  • Hyne, R.V., Maher, W.A., Invertebrate biomarkers: links to toxicosis that predict population decline (2003) Ecotoxicol. Environ. Saf., 54, pp. 366-374
  • Li, B., Stribley, J.A., Ticu, A., Xie, W., Schopfer, L.M., Hammond, P., Brimijoin, S., Lockridge, O., Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse (2000) J. Neurochem., 75, pp. 1320-1331
  • Livingstone, D.R., The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish (1998) Comp. Biochem. Physiol., 120 A, pp. 43-49
  • Lockyer, A.E., Noble, L.R., Rollinson, D., Jones, C.S., Isolation and characterization of the full-length cDNA encoding a member of a novel cytochrome p450 family (CYP320A1) from the tropical freshwater snail, Biomphalaria glabrata, intermediate host of Schistosoma mansoni (2005) Mem. Inst. Oswaldo Cruz., 100, pp. 259-262
  • Lowry, O.H., Rosebrough, Fan, A.L., Randall, R.J., Protein measurement with the folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Lundebye, A.K., Curtis, T.M., Braven, J., Depledge, M.H., Effects of the organophosphorous pesticide, dimethoate, on cardiac and acetylcholinesterase (AChE) activity in the shore crab Carcinus maenas (1997) Aquat. Toxicol., 40, pp. 23-36
  • Massoulié, J., Pezzementi, L., Bon, S., Krejci, E., Vallette, F.-M., Molecular and cellular biology of cholinesterases (1993) Prog. Neurobiol., 41, pp. 31-91
  • Mora, P., Fournier, D., Narbone, J.-F., Cholinesterases from the marine mussels Mytilus galloprovincialis Lmk. and M. edulis L. and from the freshwater bivalve Corbicula fluminea Müller (1999) Comp. Biochem. Physiol., 122 C, pp. 353-361
  • Peakall, D., (1992) Animal Biomarkers as Pollution Indicators, , Chapman and Hall, London
  • Pezzementi, L., Johnson, K., Tsigelny, I., Cotney, J., Manning, E., Barker, A., Merritt, S., Amino acids defining the acyl pocket of an invertebrate cholinesterase (2003) Comp. Biochem. Physiol., 136 B, pp. 813-832
  • Pope, C.N., Organophosphorus pesticides: do they all have the same mechanism of toxicity? (1999) J. Toxicol. Environ. Health B: Crit. Rev., 2, pp. 161-181
  • Sokal, R.R., Rohlf, F.J., Biometry (1997) The Principles and Practice of Statistic in Biological Research, , WH Freeman & Company, New York, USA
  • Solé, M., Livingstone, D.R., Components of the cytochrome p450-dependent momooxygenase system and 'NADPH-independent benzo[a]pyrene hydroxylase' activity in a wide range of marine invertebrate species (2005) Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 141, pp. 20-31
  • Sturm, A., Hansen, P.D., Altered cholinesterase and monooxigenase levels in Daphnia magna and Chironomus riparius exposed to environmental pollutants (1999) Ecotoxicol. Environ. Saf., 42, pp. 9-15
  • Timbrell, J.A., (2000) Principles of Biochemical Toxicology, , Taylor and Francis, London
  • US EPA, (1992) EPA Probit Analysis Program, Version 1.5, , Ecological Monitoring Research Division, Environmental Monitoring Systems Laboratory, Cincinnati, OH
  • Varó, I., Navarro, J.C., Amat, F., Guilhermino, L., Characterisation of cholinesterases and evaluation of the inhibitory potencial of chorpyrifos and dichlorvos to Artemia salina and Artemia partenogenética (2002) Chemosphere, 48, pp. 563-569
  • Varó, I., Navarro, J.C., Amat, F., Guilhermino, L., Effect of dichlorvos on cholinesterase activity of the European sea bass (Dicentrachus labrax) (2003) Pest. Biochem. Physiol., 75, pp. 61-72
  • Verrengia Guerrero, N.R., Taylor, M.G., Davies, N.A., Lawrence, M.A.M., Edwards, P.A., Simkiss, K., Wider, E.A., Evidence of differences in the biotransformation of organic contaminants in three species of freshwater invertebrates (2002) Environ. Pollut., 117, pp. 523-530
  • Walker, C.H., Species variations in some hepatic microsomal enzymes that metabolize xenobiotics (1980) Prog. Drug Metab., 5, pp. 113-164
  • Walker, C.H., Hopkin, S.P., Sibly, R.M., Peakall, D.B., (2001) Principles of Ecotoxicology, , Taylor and Francis, London
  • Wogram, J., Sturm, A., Segner, H., Liess, M., Effects of parathion on acetylcholinesterase, butyrylcholinesterase, and carboxylesterase in three-spined stickleback (Gasterosteus aculeatus) following short-term exposure (2001) Environ. Toxicol. Chem., 20, pp. 1528-1531
  • Zahavi, M., Tahori, A.S., Klimer, F., Insensitivity of acetylcholinesterases to organophosphorus compounds as related to size of esteratic site (1971) Mol. Pharmacol., 7, pp. 611-619

Citas:

---------- APA ----------
Kristoff, G., Guerrero, N.V., de D'Angelo, A.M.P. & Cochón, A.C. (2006) . Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus. Toxicology, 222(3), 185-194.
http://dx.doi.org/10.1016/j.tox.2006.02.018
---------- CHICAGO ----------
Kristoff, G., Guerrero, N.V., de D'Angelo, A.M.P., Cochón, A.C. "Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus" . Toxicology 222, no. 3 (2006) : 185-194.
http://dx.doi.org/10.1016/j.tox.2006.02.018
---------- MLA ----------
Kristoff, G., Guerrero, N.V., de D'Angelo, A.M.P., Cochón, A.C. "Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus" . Toxicology, vol. 222, no. 3, 2006, pp. 185-194.
http://dx.doi.org/10.1016/j.tox.2006.02.018
---------- VANCOUVER ----------
Kristoff, G., Guerrero, N.V., de D'Angelo, A.M.P., Cochón, A.C. Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus. Toxicology. 2006;222(3):185-194.
http://dx.doi.org/10.1016/j.tox.2006.02.018