Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements. © 2012 P. Héas.

Registro:

Documento: Artículo
Título:Power laws and inverse motion modelling: Application to turbulence measurements from satellite images
Autor:Héas, P.; Mémin, E.; Heitz, D.; Mininni, P.D.
Filiación:INRIA Bretagne Atlantique Research Center, Campus de Beaulieu, 35042, Rennes cedex, France
CEMAGREF, Avenue de Cucillé, 35044, Rennes cedex, France
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires, Argentina
NCAR, PO Box 3000, Boulder, CO 80307-3000, United States
Palabras clave:Atmospheric turbulence; Bayesian inference; Energy flux; Image assimilation; Motion structure functions; Power-laws; Bayesian analysis; energy flux; estimation method; inverse problem; numerical model; power law; satellite imagery; turbulence
Año:2012
Volumen:64
Número:1
DOI: http://dx.doi.org/10.3402/tellusa.v64i0.10962
Título revista:Tellus, Series A: Dynamic Meteorology and Oceanography
Título revista abreviado:Tellus Ser. A Dyn. Meteorol. Oceanogr.
ISSN:02806495
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02806495_v64_n1_p_Heas

Referencias:

  • Adrian, R., Particle imaging techniquesfor experimental fluid mechanics (1991) Annal. Rev. Fluid Mech., 23, pp. 261-304
  • Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R., A database and evaluation methodology for optical flow (2007) Computer Vision, pp. 1-8. , 2007, ICCV 2007. IEEE 11th International Conference on, vol., no., 14-21 Oct. 2007
  • Benzi, R., Scardovelli, R., Intermittency of two-dimensional decaying turbulence (1995) Europhys. Lett., 29, pp. 371-376
  • Bergen, J., Burt, P., Hingorani, R., Peleg, S., A 3-frame algorithm for estimating two-component image motion (1992) IEEE Trans. Pattern Anal. Mach. Intell., 14 (9), pp. 886-895
  • Berliner, M., Wikle, C., Milliff, R., Multiresolution wavelet analyses in hierarchical Bayesian turbulence models. Bayesian inference in wavelet based models (1999) Lect. Notes Statis., 141, pp. 341-349
  • Bernard, D., Boffetta, G., Celani, A., Falkovich, G., Conformal invariance in two-dimensional turbulence (2006) Nature Physics., 2, pp. 124-128
  • Boffetta, G., Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence (2007) J. Fluid Mech., 589, pp. 253-260
  • Carlier, J., Wieneke, B., (2005) Report 1 on production and diffusion of fluid mechanics images and data, , http://www.fluid.irisa.fr, Online at: Fluid project deliverable 1.2
  • Charney, J., Geostrophic turbulence (1971) J. Atmos. Sci., 28, pp. 1087-1095
  • Cho, J., Lindborg, E., Horizontal velocity structure functions in the upper troposphere and lower stratosphere 1. observations (2001) J. Geophys. Res., 106, pp. 223-232
  • Corpetti, T., Heas, P., Memin, E., Papadakis, N., Pressure image assimilation for atmospheric motion estimation (2009) Tellus A: Dynamic Meteorology and Oceanography., 61, pp. 160-178
  • Corpetti, T., Mémin, E., Pérez, P., Dense estimation of fluid flows (2002) Pattern Anal. Mach. Intel., 24 (3), pp. 365-380
  • Dewan, E., Saturated-cascade similitude theory of gravity wave spectra (1997) J. Geophys. Res., 102, pp. 799-818
  • Falkovich, G., Gawȩdzki, K., Vergazzola, M., Particles and fieldsin fluid turbulence (2001) Rev. Mod. Phys., 73, pp. 913-975
  • Fitzpatrick, J., The existence of geometrical density-image transformations corresponding to object motion (1988) Comput. Vision, Graphics, Image Proc., 44 (2), pp. 155-174
  • Frisch, U., (1995) Turbulence: The Legacy of A.N. Kolmogorov, , Cambridge, Cambridge University Press
  • Gotoh, T., Fukayama, D., Nakano, T., Velocity field statistics in homogeneous steady turbulence using a highresolution direct numerical simulation (2002) Physics of Fluids, 14, pp. 1065-1081
  • Gull, S.F., Developmentsin maximum-entropy data analysis (1989) In Maximum Entropy and Bayesian Methods, pp. 53-71. , J. Skilling (ed.), Kluwer Academic, Dordrecht
  • Heas, P., Memin, E., Three-dimensional motion estimation of atmospheric layers from image sequences (2008) IEEE trans. on Geo. and Rem. Sensing., 46 (8), pp. 2385-2396
  • Heas, P., Memin, E., Heitz, D., Mininni, P., Bayesian selection of scaling laws for motion modeling in images (2009) In International Conference on Computer Vision (ICCV'09), , Kyoto, Japan
  • Heas, P., Memin, E., Papadakis, N., Szantai, A., Layered estimation of atmospheric mesoscale dynamics from satellite imagery (2007) IEEE trans. on Geo. and Rem. Sensing., 45 (12), pp. 4087-4104
  • Heas, P., Memin, E., Papadakis, N., Szantai, A., Layered estimation of atmospheric mesoscale dynamics from satellite imagery (2007) IEEE trans. on Geo. and Rem. Sensing., 45 (12), pp. 4087-4104
  • Heitz, D., Carlier, J., Arroyo, G., (2007), Final Report on the Evaluation of the Tasks of the Workpackage 2. Technical report, Deliverable 5.4, Cemagref, Rennes, France; Heitz, D., Memin, E., Schnoerr, C., Variational fluid flow measurements from image sequences: synopsis and perspectives (2010) Exp. Fluids., 48 (3), pp. 369-393
  • Hoar, T.J., Milliff, R.F., Nychka, D., Wikle, C.K., Berliner, L.M., Windsfrom a Bayesian hierarchical model: computation for atmosphere-ocean research (2003) J. Comp. and Graph. Statis., 12 (4), pp. 781-807
  • Horn, B., Schunck, B., Determining optical flow (1981) Artificial Intelligence., 17, pp. 185-203
  • Jaynes, E.T., (2003) Probability Theory: The Logic of Science, , Cambridge, Cambridge University Press
  • Kolmogorov, A., The local structure of turbulence in inompressible viscous fluid for very large Reynolds number (1941) Dolk. Akad. Nauk SSSR., 30, pp. 301-305
  • Kraichnan, R., Inertial rangesin two-dimensional turbulence (1967) Phys. Fluids., 10, pp. 1417-1423
  • Kurien, S., L'vov, V.S., Procaccia, I., Sreenivasan, K.R., The scaling structure of the velocity statistics in atmospheric boundary layer (2000) Phys. Rev. E(Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics)., 61 (1), pp. 407-421
  • Leese, J., Novack, C., Clark, B., An automated technique for obtained cloud motion from geosynchronous satellite data using cross correlation (1971) J. Appl. Met., 10, pp. 118-132
  • Lindborg, E., Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence (1999) J. Fluid Mech., 388, pp. 259-288
  • Lindborg, E., Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere (2007) J. Atmos. Sci., 64 (3), pp. 1017-1025
  • Lindborg, E., Cho, J., Horizontal velocity structure functions in the upper troposphere and lower stratosphere 2 theoretical considerations (2001) J. Geophys. Res., 106, pp. 233-241
  • Liu, T., Shen, L., Fluid flow and optical flow (2008) J. Fluid Mech., 614, pp. 253-291
  • Lucas, B.D., Kanade, T., An iterative image registration technique with an application to stereo vision (1981) In Proceedings of the 7th international joint conference on Artificial intelligence, 2, pp. 674-679. , (IJCAI'81), Vol. 2. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
  • MacKay, D.J.C., Bayesian interpolation (1992) Neural Computation., 4 (3), pp. 415-447
  • MacKay, D.J.C., (2003) Information Theory, Inference, and Learning Algorithms, , Cambridge, Cambridge University Press
  • Monin, A.S., Yaglom, A.M., (1975) Statistical Fluid Mechanics: Mechanics of Turbulence, , New York, MIT Press
  • Nastrom, G., Jasperson, W., Gage, K., Kinetic energy spectrum of large and mesoscale atmospheric processes (1984) Nature., 310, pp. 36-38
  • Nastrom, G.D., Eaton, F.D., Turbulence eddy dissipation rates from radar observations at 5-20 km at White Sands Missile Range, New Mexico (1997) J. Geophys. res., 102, pp. 19495-19506
  • Nocedal, J., Wright, S.J., (1999) Numerical Optimization., , Springer Seriesin OperationsRes earch, Springer-Verlag, New York, NY
  • Papadakis, N., Memin, E., Variational assimilation of fluid motion from image sequences (2008) SIAM J. Imaging Sci., 1 (4), pp. 343-363
  • Pedlosky, P., (1987) Geophysical Fluid Dynamics, , Springer, New York
  • Robert, C.P., (2007) The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, p. 577. , Springer
  • Skilling, J., The eigenvalues of mega-dimensional matrices (1989) Maximum Entropy and Bayesian Methods, pp. 455-466. , Cambridge, England
  • Taylor, M.A., Kurien, S., Eyink, G.L., Recovering isotropic statistics in turbulence simulations: The kolmogorov 4/ 5th-law (2003) Phys. rev. E., 2, p. 026310
  • Tung, K.K., The k 3 and k 5/3 energy spectrum of the atmospheric turbulence: quasi-geostrophic two level model simulation (2003) J. Atmos. Sci., 60, pp. 824-835
  • Weickert, J., Schnörr, C., A theoretical framework for convex regularizersin pde-based computation of image motion (2004) Int. J. Comp. Vis., 45 (3), pp. 245-264
  • Wikle, C.K., Milliff, R.F., Nychka, D., Berliner, L.M., Spatio-temporal hierarchical Bayesian modeling: tropical ocean surface winds (2001) J. Amer. Statis. Assoc., 96, pp. 382-397
  • Yuan, J., Schnoerr, C., Memin, E., Discrete orthogonal decomposition and variational fluid flow estimation (2007) J. Math. Imaging & Vision., 28, pp. 67-80

Citas:

---------- APA ----------
Héas, P., Mémin, E., Heitz, D. & Mininni, P.D. (2012) . Power laws and inverse motion modelling: Application to turbulence measurements from satellite images. Tellus, Series A: Dynamic Meteorology and Oceanography, 64(1).
http://dx.doi.org/10.3402/tellusa.v64i0.10962
---------- CHICAGO ----------
Héas, P., Mémin, E., Heitz, D., Mininni, P.D. "Power laws and inverse motion modelling: Application to turbulence measurements from satellite images" . Tellus, Series A: Dynamic Meteorology and Oceanography 64, no. 1 (2012).
http://dx.doi.org/10.3402/tellusa.v64i0.10962
---------- MLA ----------
Héas, P., Mémin, E., Heitz, D., Mininni, P.D. "Power laws and inverse motion modelling: Application to turbulence measurements from satellite images" . Tellus, Series A: Dynamic Meteorology and Oceanography, vol. 64, no. 1, 2012.
http://dx.doi.org/10.3402/tellusa.v64i0.10962
---------- VANCOUVER ----------
Héas, P., Mémin, E., Heitz, D., Mininni, P.D. Power laws and inverse motion modelling: Application to turbulence measurements from satellite images. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2012;64(1).
http://dx.doi.org/10.3402/tellusa.v64i0.10962