Artículo

Lossada, A.C.; Giambiagi, L.; Hoke, G.D.; Fitzgerald, P.G.; Creixell, C.; Murillo, I.; Mardonez, D.; Velásquez, R.; Suriano, J. "Thermochronologic Evidence for Late Eocene Andean Mountain Building at 30°S" (2017) Tectonics. 36(11):2693-2713
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Andes between 28° and 30°S represent a transition between the Puna-Altiplano Plateau and the Frontal/Principal Cordillera fold-and-thrust belts to the south. While significant early Cenozoic deformation documented in the Andean Plateau, deciphering the early episodes of deformation during Andean mountain building in the transition area is largely unstudied. Apatite fission track (AFT) and (U-Th-Sm)/He (AHe) thermochronology from a vertical and a horizontal transect reveal the exhumation history of the High Andes at 30°S, an area at the heart of this major transition. Interpretation of the age-elevation profile, combined with inverse thermal modeling, indicates that the onset of rapid cooling was underway by ~35 Ma, followed by a significant decrease in cooling rate at ~30–25 Ma. AFT thermal models also reveal a second episode of rapid cooling in the early Miocene (~18 Ma) related to rock exhumation to its present position. Low exhumation between the rapid cooling events allowed for the development of a partial annealing zone. We interpret the observed Eocene rapid exhumation as the product of a previously unrecognized compressive event in this part of the Andes that reflects a southern extension of Eocene orogenesis recognized in the Puna/Altiplano. Renewed early-Miocene exhumation indicates that the late Cenozoic compressional stresses responsible for the main phase of uplift of the South Central Andes also impacted the core of the range in this transitional sector. The major episode of Eocene exhumation suggests the creation of significant topographic relief in the High Andes earlier than previously thought. ©2017. American Geophysical Union. All Rights Reserved.

Registro:

Documento: Artículo
Título:Thermochronologic Evidence for Late Eocene Andean Mountain Building at 30°S
Autor:Lossada, A.C.; Giambiagi, L.; Hoke, G.D.; Fitzgerald, P.G.; Creixell, C.; Murillo, I.; Mardonez, D.; Velásquez, R.; Suriano, J.
Filiación:IANIGLA, CCT Mendoza, CONICET, Mendoza, Argentina
Department of Earth Sciences, Syracuse University, Syracuse, NY, United States
SERNAGEOMIN, Providencia, Chile
IGEBA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
Palabras clave:Eocene constructional phase; exhumation; mountain building; South Central Andes; thermochronology; Cooling; Deformation; Fission reactions; Inverse problems; Landforms; Phosphate minerals; Tectonics; Central Andes; Eocene constructional phase; Exhumation; Mountain building; Thermochronology; Geochronology; cooling; deformation; Eocene; exhumation; fold and thrust belt; mountain region; stress; thermochronology; Andes
Año:2017
Volumen:36
Número:11
Página de inicio:2693
Página de fin:2713
DOI: http://dx.doi.org/10.1002/2017TC004674
Título revista:Tectonics
Título revista abreviado:Tectonics
ISSN:02787407
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02787407_v36_n11_p2693_Lossada

Referencias:

  • Aguilar, G., Reverman, R., Salazar, E., Rodríguez, M., Rossel, K., (2014) Thermochronometric constraints on the timing and rates of late Miocene-Pliocene exhumation in flat-slab subduction zone of north-central Chile, , #x0026;, Presented at the 2014 AGU Fall Meeting, San Francisco, CA
  • Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, C., Mpodozis, C., Isacks, B.L., Foreland shortening and crustal balancing in the Andes at 30°S latitude (1990) Tectonics, 9 (4), pp. 789-809. , https://doi.org/10.1029/TC009i004p00789
  • Allmendinger, R.W., Judge, P.A., The Argentine Precordillera: A foreland thrust belt proximal to the subducted plate (2014) Geosphere, 10 (6), pp. 1203-1218. , https://doi.org/10.1130/GES01062.1
  • Alvarado, P., Beck, S., Zandt, G., Crustal structure of the south-central Andes Cordillera and backarc region from regional waveform modeling (2007) Geophysical Journal International, 170 (2), pp. 858-875. , https://doi.org/10.1111/j.1365-246X.2007.03452
  • Ammirati, J.-B., Pérez Luján, S., Alvarado, P., Beck, S., Rocher, S., Zandt, G., High-resolution images above the Pampean flat slab of Argentina (31–32°S) from local receiver functions: Implications on regional tectonics (2016) Earth and Planetary Science Letters, 450, pp. 29-39. , https://doi.org/10.1016/j.epsl.2016.06.018
  • Anderson, R.B., Long, S.P., Horton, B.K., Calle, A.Z., Ramirez, V., Shortening and structural architecture of the Andean fold-thrust belt of southern Bolivia (21°S): Implications for kinematic development and crustal thickening of the central Andes (2017) Geosphere, 13 (2), pp. 538-558. , https://doi.org/10.1130/GES01433.1
  • Barazangi, M., Isacks, B., Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America (1976) Geology, 4 (11), pp. 686-692. , https://doi.org/10.1130/0091-7613(1976)4%3C686:SDOEAS%3E2.0.CO;2
  • Benavides-Cáceres, V., Orogenic evolution of the Peruvian Andes: the Andean cycle (1999) Geology and ore deposits of the Central Andes, 7
  • Bissig, T., Lee, J., Clark, A.H., The Cenozoic history of volcanism and hydrothermal alteration in the Central Andean flat-slab region: New 40Ar-39Ar constraints from the El Indio-Pascua Au (-Ar, Cu) belt, 29°20′–30°30′S (2001) International Geology Review, 43 (4), pp. 312-340. , https://doi.org/10.1080/00206810109465016
  • Borello, A., Cuerda, A., Grupo Río Huaco (Triásico), San Juan (1968) Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, 7, pp. 3-15
  • Braun, J., Quantifying the effect of recent relief changes on age–elevation relationships (2002) Earth and Planetary Science Letters, 200 (3-4), pp. 331-343. , https://doi.org/10.1016/S0012-821X(02)00638-6
  • Brown, R.W., Backstacking apatite fission track “stratigraphy”: A method for resolving the erosional and isostatic rebound components of tectonic uplift histories (1991) Geology, 19 (1), pp. 74-77. , https://doi.org/10.1130/0091-7613(1991)019%3C0074:BAFTSA%3E2.3.CO;2
  • Burtner, R.L., Nigrini, A., Donelick, R.A., Thermochronology of Lower Cretaceous source rocks in the Idaho–Wyoming thrust belt (1994) American Association of Petroleum Geologists Bulletin, 78 (10), pp. 1613-1636
  • Cahill, T., Isacks, B.L., Seismicity and shape of the subducted Nazca plate (1992) Journal of Geophysical Research, 97 (B12), pp. 17,503-17,529
  • Carlson, W.D., Donelick, R.A., Ketcham, R.A., Variability of apatite fission-track annealing kinetics: I. Experimental results (1999) American Mineralogist, 84 (9), pp. 1213-1223. , https://doi.org/10.2138/am-1999-0901
  • Cegarra, M.I., Ramos, V.A., La faja plegada y corrida del Aconcagua (1996) Geología de la región del Aconcagua, provincias de San Juan y Mendoza, pp. 387-422. , #x0026;, In, Buenos Aires, Dirección Nacional del Servicio Geológic
  • Cembrano, J., Zentilli, M., Grist, A., Yáñez, G., (2003) Nuevas edades de trazas de fisión para Chile Central (30–34°S): Implicancias en el alzamiento y exhumación en los Andes desde el Cretácico, , #x0026;, Paper presented at 10th Congreso Geológico Chileno, Concepción, Chile
  • Charrier, R., Baeza, O., Elgueta, S., Flynn, J.J., Gans, P., Kay, S.M., Zurita, E., Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°–36°SL) (2002) Journal of South American Earth Sciences, 15 (1), pp. 117-139. , https://doi.org/10.1016/S0895-9811(02)00009-3
  • Charrier, R., Hérail, G., Pinto, L., García, M., Riquelme, R., Farías, M., Muñoz, N., Cenozoic tectonic evolution in the Central Andes in northern Chile and west central Bolivia: Implications for paleogeographic, magmatic and mountain building evolution (2013) International Journal of Earth Sciences, 102 (1), pp. 235-264. , https://doi.org/10.1007/s00531-012-0801-4
  • Charrier, R., Pinto, L., Rodríguez, M.P., Tectonostratigraphic evolution of the Andean Orogen in Chile (2007) The geology of Chile, pp. 21-114. , #x0026;, In, T. Moreno, &, W. Gibbon, (Eds.),, London, The Geological Societ
  • Coira, B., Davidson, J., Mpodozis, C., Ramos, V., Tectonic and magmatic evolution of the Andes of Northern Argentina and Chile (1982) Earth-Science Reviews, 18 (3-4), pp. 303-332. , https://doi.org/10.1016/0012-8252(82)90042-3
  • Coutand, I., Cobbold, P., de Urreiztieta, M., Gautier, P., Chauvin, A., Gapais, D., López Gamundi, O., Style and history of Andean deformation, Puna plateau, northwestern Argentina (2001) Tectonics, 20 (2), pp. 210-234. , https://doi.org/10.1029/2000TC900031
  • Creixell, C., Labbé, M., Arévalo, C., Salazar, E., (2013) Geología del área Estación Chañar- Junta de Chingoles, , #x0026;, Regiones de Atacama y Coquimbo, Carta geológica de Chile, Serie Geología Básica 150 (scale 1100,000). Chile Serv. Nac. Geol. Min
  • Cristallini, E.O., Ramos, V.A., Thick-skinned and thin-skinned thrusting in the la Ramada fold and thrust belt: Crustal evolution of the High Andes of San Juan, Argentina (32 SL) (2000) Tectonophysics, 317 (3-4), pp. 205-235. , https://doi.org/10.1016/S0040-1951(99)00276-0
  • Dahlen, F.A., Suppe, J., Mechanics, growth, and erosion of mountain belts (1988) Geological Society of America Special Papers, 218, pp. 161-178. , https://doi.org/10.1130/SPE218-p161
  • Dean, R.B., Dixon, W.J., Simplified statistics for small numbers of observations (1951) Analytical Chemistry, 23 (4), pp. 636-638. , https://doi.org/10.1021/ac60052a025
  • del Papa, C.E., Hongn, F., Petrinovic, I., Domínguez, R., Evidencias de deformación pre-miocena media asociada al antepaís andino en la Cordillera Oriental (24°35′ S - 66°12′ O) (2004) Revista de la Asociación Geológica Argentina, 59, pp. 506-509
  • Ehlers, T.A., Farley, K.A., Apatite (U–Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes (2003) Earth and Planetary Science Letters, 206 (1-2), pp. 1-14. , https://doi.org/10.1016/S0012-821X(02)01069-5
  • Elger, K., Oncken, O., Glodny, J., Plateau-style accumulation of deformation: Southern Altiplano (2005) Tectonics, 24. , https://doi.org/10.1029/2004TC001675
  • Emparán, C., Pineda, G., (1999) Area Condoriaco-Rivadavia, Región de Coquimbo (Sheet 12, scale 1:100,000), , #x0026;, Chile Serv. Nac. Min
  • Farley, K.A., (U–Th)/He dating: Techniques, calibrations, and applications (2002) Noble gases in geochemistry and cosmochemistry. Reviews in mineralogy and petrology, pp. 819-844. , In, D. Porcelli, C. J. Ballentine, #x0026;, R. Wieler, (Eds.),, Washington, DC, Mineralogical Society of Americ
  • Farley, K.A., Wolf, R.A., Silver, L.T., The effects of long alphastopping distances on (U–Th)/He ages (1996) Geochimica et Cosmochimica Acta, 60 (21), pp. 4223-4229. , https://doi.org/10.1016/S0016-7037(96)00193-7
  • Fillon, C., van der Beek, P., Post-orogenic evolution of the southern Pyrenees: Constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data (2012) Basin Research, 24 (4), pp. 418-436. , https://doi.org/10.1111/j.1365-2117.2011.00533.x
  • Fitzgerald, P.G., Thermochonologic constraints on post-Paleozoic tectonic evolution of central Transantartic Mountains, Antartica (1994) Tectonics, 13 (4), pp. 818-836. , https://doi.org/10.1029/94TC00595
  • Fitzgerald, P.G., Baldwin, S., Webb, L.E., O´Sullivan, P.B., Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes: A case study from the Transantartic Mountains of southern Victoria Land (2006) Chemical Geology, 225 (1-2), pp. 91-120. , https://doi.org/10.1016/j.chemgeo.2005.09.001
  • Fitzgerald, P.G., Gleadow, A.J.W., New approaches in fission track thermochronology as a tectonic tool: Examples from the Transantartic Mountains (1990) Nuclear Tracks and Radiation Measurements, 17 (3), pp. 351-357. , https://doi.org/10.1016/1359-0189(90)90057-5
  • Fitzgerald, P.G., Muñoz, J.A., Coney, P.J., Baldwin, S.L., Asymmetric exhumation across the Pyrenean orogen: Implications for the tectonic evolution of a collisional orogen (1999) Earth and Planetary Science Letters, 173 (3), pp. 157-170. , https://doi.org/10.1016/S0012-821X(99)00225-3
  • Fitzgerald, P.G., Sorkhabi, R.B., Redfield, T.F., Stump, E., Uplift and denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters (1995) Journal of Geophysical Research, 20, pp. 175-191
  • Flowers, R.M., Ketcham, R.A., Shuster, D.L., Farley, K.A., Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model (2009) Geochimica et Cosmochimica Acta, 73 (8), pp. 2347-2365. , https://doi.org/10.1016/j.gca.2009.01.015
  • Fosdick, J.C., Carrapa, B., Ortíz, G., Faulting and erosion in the Argentine Precordillera during changes in subduction regime: Reconciling bedrock cooling and detrital records (2015) Earth and Planetary Science Letters, 432, pp. 73-83. , https://doi.org/10.1016/j.epsl.2015.09.041
  • Fosdick, J.C., Reat, E.J., Carrapa, B., Ortiz, G., Alvarado, P., Retroarc basin reorganization and aridification during Paleogene uplift of the southern central Andes (2017) Tectonics, 36, pp. 493-514. , https://doi.org/10.1002/2016TC004400
  • Galbraith, R.F., On statistical models for fission track counts (1981) Journal of the International Association for Mathematical Geology, 13 (6), pp. 471-478. , https://doi.org/10.1007/BF01034498
  • Gallagher, K., Brown, R.W., Johnson, C., Fission track analysis and its application to geological problems (1998) Annual Review of Earth and Planetary Sciences, 26 (1), pp. 519-572. , https://doi.org/10.1146/annurev.%20Earth.26.1.519
  • Giambiagi, L., Álvarez, P.P., Creixell, C., Mardonez, D., Murillo, I., Velásquez, R., Barrionuevo, M., Cenozoic shift from compression to strike-slip stress regime in the High Andes at 30°S, during the shallowing of the slab: Implications for the El Indio/Tambo mineral district (2017) Tectonics, 36. , https://doi.org/10.1002/2017TC004608
  • Giambiagi, L., Mescua, J., Bechis, F., Tassara, A., Hoke, G., Thrust belts of the Southern Central Andes: Along strike variations in shortening, topography, crustal geometry and denudation (2012) Geological Society of America Bulletin, 124 (7-8), pp. 1339-1351. , https://doi.org/10.1130/B30609.1
  • Giambiagi, L., Tassara, A., Mescua, J., Tunik, M., Alvarez, P., Godoy, E., Pagano, S., Evolution of shallow and deep structures along the Maipo-Tunuyán transect (33°40′S): From the Pacific coast to the Andean foreland (2015) Geodynamic Processes in the Andes of Central Chile and Argentina, pp. 63-82. , In, S. A. Sepúlveda, (Eds.),, Geological Society of London Special Publication, 33
  • Gibson, M., Sinclair, H.D., Lynn, G.J., Stuart, F.M., Late- to postorogenic exhumation of the Central Pyrenees revealed through combined thermochronological data and modeling (2007) Basin Research, 19 (3), pp. 323-334. , https://doi.org/10.1111/j.1365-2117.2007.00333.x
  • Gleadow, A.J., Brown, R.W., Fission-track thermochronology and the long-term denudational response to tectonics (2000) Geomorphology and global tectonics, pp. 57-75. , #x0026;, In, M. J. Summerfield, (Ed.),, New York, Wile
  • Gleadow, A.J., Duddy, I.R., Green, P.F., Lovering, J.F., Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis (1986) Contributions to Mineralogy and Petrology, 94 (4), pp. 405-415. , https://doi.org/10.1007/BF00376334
  • Gleadow, A.J.W., Fission-track dating methods: What are the real alternatives? (1981) Nuclear Tracks and Radiation Measurements, 5 (1-2), pp. 3-14. , https://doi.org/10.1016/0191-278X(81)90021-4
  • Gleadow, A.J.W., Fitzgerald, P.G., Uplift history and structure of the Transantartic Mountains: New evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land (1987) Earth and Planetary Science Letters, 82 (1-2), pp. 1-14. , https://doi.org/10.1016/0012-821X(87)90102-6
  • Green, P.F., A new look at statistics in fission track dating (1981) Nuclear Tracks and Radiation Measurements, 5 (1-2), pp. 77-86. , https://doi.org/10.1016/0191-278X(81)90029-9
  • Hamza, V.M., Muñoz, M., Heat flow map of South America (1996) Geothermics, 25 (6), pp. 599-646. , https://doi.org/10.1016/S0375-6505(96)00025-9
  • Hervé, F., Fanning, C.M., Calderón, M., Mpodozis, C., Early Permian to Late Triassic batholiths of the Chilean Frontal Cordillera (28–32°S): SHRIMP U-Pb zircon ages and Lu-Hf and O isotope systematics (2014) Lithos, 184-187, pp. 436-446
  • Hilley, G.E., Strecker, M.R., Steady state erosion of critical Coulomb wedges with applications to Taiwan and the Himalaya (2004) Journal of Geophysical Research, 109. , https://doi.org/10.1029/2002JB002284
  • Hoke, G., Graber, N., Mescua, J., Giambiagi, L., Fitzgerald, P., Metcalf, J., Near pure surface uplift of the Argentine Frontal Cordillera: Insights from (U-Th)/He thermochronometry and geomorphic analysis (2015) Geodynamic Processes in the Andes of Central Chile and Argentina, pp. 383-399. , #x0026;, In, S. A. Sepúlveda, (Eds.),, Geological Society of London Special Publication, 33
  • Hong, F., del Papa, C., Powell, J., Petrinovic, I., Mon, R., Deraco, V., Middle Eocene deformation and sedimentation in the Puna-Eastern Cordillera transition (23°–26°S): Control by preexisting heterogeneities on the pattern of initial Andean shortening (2007) Geology, 35 (3), pp. 271-274. , https://doi.org/10.1130/G23189A.1
  • Horton, B.K., DeCelles, P.G., The modern foreland basin system adjacent to the Central Andes (1997) Geology, 25 (10), pp. 895-898. , https://doi.org/10.1130/0091-7613(1997)025%3C0895:TMFBSA%3E2.3.CO;2
  • Huntington, K.W., Ehlers, T.A., Hodges, K.V., Whipp, D.M., Topography, exhumation pathway, age uncertainties, and the interpretation of thermochronometer data (2007) Tectonics, 26. , https://doi.org/10.1029/2007TC002108
  • Hurford, A.J., Green, P.F., The zeta age calibration of fission-track dating (1983) Chemical Geology, 41, pp. 285-317. , https://doi.org/10.1016/S0009-2541(83)80026-6
  • Isacks, B., Uplift of the Central Andean Plateau and bending of the Bolivian Orocline (1988) Journal of Geophysical Research, 93 (B4), pp. 3211-3231. , https://doi.org/10.1029/JB093iB04p03211
  • Jaillard, E., La Fase Peruana (Cretácico Superior) en la Margen Peruana (1992) Bol. Soc. Geol. Perú, 83, pp. 81-87
  • Jones, R.E., (2014) Subduction zone processes and continental crust formation in the southern Central Andes: Insights from geochemistry and geochronology, , (PhD thesis). Edinburgh School of GeoSciences, The University of Edinburgh
  • Jones, R.E., Kirstein, L.A., Kasemann, S.A., Litvak, V.D., Poma, S., Alonso, R.N., Hinton, R., The role of changing geodynamics in the progressive contamination of Late Cretaceous to late Miocene arc magmas in the southern Central Andes (2016) Lithos, 262, pp. 169-191. , https://doi.org/10.1016/j.lithos.2016.07.002
  • Jordan, T., Isacks, B.L., Allmendinger, R.W., Brewer, J.A., Ramos, V.A., Ando, C.J., Andean tectonics related to geometry of subducted Nazca Plate (1983) Geological Society of America Bulletin, 94 (3), pp. 341-361. , https://doi.org/10.1130/0016-7606(1983)94%3C341:ATRTGO%3E2.0.CO;2
  • Jordan, T.E., Burns, W.M., Veiga, R., Pángaro, F., Copeland, P., Kelley, S., Mpodozis, C., Extension and basin formation in the southern Andes caused by increased convergence rate: A mid-Cenozoic trigger for the Andes (2001) Tectonics, 20 (3), pp. 308-324. , https://doi.org/10.1029/1999TC001181
  • Jordan, T.T., Allmendinger, R.W., Damanti, J.F., Drake, R.E., Chronology of motion in a complete thrust belt: The Precordillera, 30-31°S, Andes Mountains (1993) The Journal of Geology, 101 (2), pp. 135-156. , https://doi.org/10.1086/648213
  • Kay, S., Maksaev, V., Mpodozis, C., Moscoso, R., Nasi, C., Gordillo, C.E., Tertiary Andean magmatism in Chile and Argentina between 28°S and 33°S: Correlation of magmatic chemistry with a changing Benioff zone (1988) Journal of South American Earth Sciences, 1 (1), pp. 21-38. , https://doi.org/10.1016/0895-9811(88)90013-2
  • Kay, S.M., Mpodozis, C., Magmatism as a probe to Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab (2002) Journal of South American Earth Sciences, 15, pp. 39-57
  • Ketcham, R.A., Forward and inverse modeling of low-temperature thermochronometry data (2005) Reviews in Mineralogy and Geochemistry, 58 (1), pp. 275-314
  • Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J., Hurford, A.J., Improved modeling of fission-track annealing in apatite (2007) American Mineralogist, 92 (5-6), pp. 799-810. , https://doi.org/10.2138/am.2007.2281
  • Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J., Hurford, A.J., Improved measurement of fission-track annealing in apatite using c-axis projection (2007) American Mineralogist, 92 (5-6), pp. 789-798. , https://doi.org/10.2138/am.2007.2280
  • Ketcham, R.A., Donelick, R.A., Carlson, W.D., Variability of apatite fission track annealing kinetics: III. Extrapolation to geological time scales (1999) American Mineralogist, 84 (9), pp. 1235-1255. , https://doi.org/10.2138/am-1999-0903
  • Ketcham, R.A., Gautheron, C., Tassan-Got, L., Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: Refinement of the baseline case (2011) Geochimica et Cosmochimica Acta, 75 (24), pp. 7779-7791. , https://doi.org/10.1016/j.gca.2011.10.011
  • Lamb, S., Davis, P., Cenozoic climate change as a possible cause for the rise of the Andes (2003) Nature, 425 (6960), pp. 792-797. , https://doi.org/10.1038/nature02049
  • Limarino, O., Net, L., Gutierrez, P., Barreda, V., Caselli, A., Ballent, S., Definicion litoestratigrafica de la Formacion Cienaga del Rio Huaco (Cretacico Superior), Precordillera central, San Juan, Argentina (2000) Revista de la Asociación Geológica Argentina, 55, pp. 83-99
  • Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Las unidades volcánicas y plutónicas del Cenozoico superior en la Alta Cordillera del Norte Chico (29–31°S): Geología, alteración hidrotermal y mineralización (1984) Revista Geologica de Chile, 21, pp. 11-51
  • Maksaev, V., Munizaga, F., Tassinari, C., Timing of the magmatism of the paleo-Pacific border of Gondwana: U-Pb geochronology of Late Paleozoic to Early Mesozoic igneous rocks of the north Chilean Andes between 20° and 31°S (2014) Andean Geology, 41 (3), pp. 447-506
  • Martin, M.W., Clavero, J., Mpodozis, C., (1997) Eocene to late Miocene structural development of Chile's El Indio gold belt, ~30°S, , #x0026;, Paper presented at 8th Congreso Geológico Chileno, Antofagasta, Chile
  • Martin, M.W., Clavero, J., Mpodozis, C., Late Paleozoic to Early Jurassic tectonic development of the high Andean Principal Cordillera, El Indio Region, Chile (29-30°S) (1999) Journal of South American Earth Sciences, 12 (1), pp. 33-49. , https://doi.org/10.1016/S0895-9811(99)00003-6
  • Martin, M.W., Clavero, J., Mpodozis, C., Cuitiño, L., (1995) Estudio geológico de la franja El Indio, Cordillera de Coquimbo, Informe Regitrado IR-95-6, pp. 1-238. , #x0026;, Santiago, Serv. Nac. Geol. Mi
  • Martínez, F., Arriagada, C., Peña, M., Deckart, K., Charrier, R., Tectonic styles and crustal shortening of the Central Andes “Pampean” flat-slab segment in northern Chile (27°-29°S) (2016) Tectonophysics, 667, pp. 144-162. , https://doi.org/10.1016/j.tecto.2015.11.019
  • McQuarrie, N., The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau (2002) Geological Society of America Bulletin, 114 (8), pp. 950-963. , https://doi.org/10.1130/0016-7606(2002)114%3C0950:TKHOTC%3E2.0.CO;2
  • Mégard, F., The Andean orogenic period and its major structures in central and northern Peru (1984) Journal of the Geological Society of London, 141 (5), pp. 893-900. , https://doi.org/10.1144/gsjgs.141.5.0893
  • Merino, R., (2013) Estratigrafía, sedimentología y proveniencia de las sucesiones de trasarco del Jurásico Superior entre los 28°30′–30°S y 69°50′–70°40′W, , (MS thesis). Concepción, Chile Universidad de Concepción
  • Mescua, J.F., Giambiagi, L.B., Tassara, A., Gimenez, M., Ramos, V.A., Influence of pre-Andean history over Cenozoic foreland deformation: Structural styles in the Malargüe fold-and-thrust belt at 35 S, Andes of Argentina (2014) Geosphere, 10 (3), pp. 585-609. , https://doi.org/10.1130/GES00939.1
  • Metcalf, J.R., Fitzgerald, P.G., Baldwin, S.L., Muñoz, J.A., Thermochronology of a convergent orogen: Constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone (2009) Earth and Planetary Science Letters, 287 (3-4), pp. 488-503. , https://doi.org/10.1016/j.epsl.2009.08.036
  • Morgan, P., The thermal structure and thermal evolution of the continental lithosphere (1984) Physics and Chemistry of the Earth, 15, pp. 107-193
  • Moscoso, R., Mpodozis, C., Estilos estructurales en el Norte Chico de Chile (28–31°S), Regiones de Atacama y Coquimbo (1988) Revista Geologica de Chíle, 15 (2), pp. 151-166
  • Mpodozis, C., Arriagiada, C., Basso, M., Roperch, P., Cobbold, P., Reich, M., Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, northern Chile: Implications for the tectonic evolution of the central Andes (2005) Tectonophysics, 399 (1-4), pp. 125-154. , https://doi.org/10.1016/j.tecto.2004.12.019
  • Mpodozis, C., Cornejo, P., (1988) Hoja Pisco Elqui, Carta Geológica de Chile (sheet 68), , #x0026;, Chile Serv. Nac. Geol. Min
  • Mpodozis, C., Ramos, V.A., The Andes of Chile and Argentina (1989) Geology of the Andes and its relation to hydrocarbon and mineral resources, pp. 59-90. , #x0026;, In, G. E. Ericksen, (Eds.),, Circumpacific Council for Energy and Mineral Resources, Earth Sciences Series 11, TX, Springe
  • Murillo, I., Velásquez, R., Creixell, C., (2017) Geología de las áreas Guanta – Los Cuartitos y Paso de Vacas Heladas, regiones de Atacama y Coquimbo, with explanatory text, Carta Geológica de Chile, , #x0026;, Santiago, Serv. Nac. Geol. Mi
  • Nasi, C.P., Moscoso, R.D., Maksaev, V.J., (1990) Hoja Guanta, Región de Coquimbo, with explanatory text, Carta Geológica de Chile (sheet 67), , #x0026;, Chile Serv. Geol. Min
  • Niemi, N.A., Buscher, J.T., Spotila, J.A., House, M.A., Kelley, S.A., Insights from low-temperature thermochronometry into transpressional deformation and crustal exhumation along the San Andreas fault in the western Transverse Ranges, California (2013) Tectonics, 32, pp. 1602-1622. , https://doi.org/10.1002/2013TC003377
  • Oliveros, V., Morata, D., Aguirre, L., Féraud, G., Fornari, G., Jurassic to Early Cretaceous subduction-related magmatism in the Coastal Cordillera of northern Chile (18°30′–24°S): Geochemistry and petrogenesis (2007) Revista Geologica de Chile, 34 (2), pp. 209-232
  • Oncken, O., Hindle, D., Kley, J., Elger, K., Victor, P., Schemmann, K., Deformation of the central Andean upper plate system—Facts, fiction, and constraints for plateau models (2006) The Andes, pp. 3-27. , https://doi.org/10.1007/978-3-540-48684-8_1, #x0026;, In, O. Oncken, (Eds.),, Berlin, Springe
  • Ortiz, M., Merino, R.N., (2015) Geología de las áreas Río Chollay-Matancilla y Cajón del Encierro, Regiones de Atacama y Coquimbo, Carta Geológica de Chile (scale 1:100,000), , #x0026;, Chile Serv. Nac. Geol. Min
  • Pardo-Casas, F., Molnar, P., Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time (1987) Tectonics, 6 (3), pp. 233-248. , https://doi.org/10.1029/TC006i003p00233
  • Payrola, P.A., Powell, J., del Papa, C.E., Hongn, F., Middle Eocene deformation-sedimentation in the Luracatao Valley: Tracking the beginning of the foreland basin of northwestern Argentina (2009) Journal of South American Earth Sciences, 28, pp. 142-154
  • Pineda, G., Emparán, C., (2006) Geología del área de Vicuña-Pichasca, Región de Coquimbo, , #x0026;, Carta Geológica de Chile, Serie Geología Básica (sheet 97). Santiago, Chile Serv. Nac. Geol. Min
  • Ramos, V., The tectonic regime along the Andes: Present-day and Mesozoic regimes (2010) Geological Journal, 45 (1), pp. 2-25. , https://doi.org/10.1002/gj.1193
  • Ramos, V., Jordan, T.E., Allmendinger, R., Mpodozis, C., Kay, S., Cortés, J.M., Palma, M., Paleozoic terranes of the central Argentine-Chilean Andes (1986) Tectonics, 5 (6), pp. 855-880. , https://doi.org/10.1029/TC005i006p00855
  • Ramos, V.A., The tectonics of the Central Andes (30°–33°S latitude) (1988) Proceses in continental lithospheric deformation, pp. 31-54. , https://doi.org/10.1130/SPE218-p31, In, S. Clark, (Eds.),, Geological Society of America Special Paper, 21
  • Ramos, V.A., Cegarra, M.I., Cristallini, E., Cenozoic tectonic of the High Andes of West-Central Argentina (30–36 S latitude) (1996) Tectonophysics, 259 (1-3), pp. 185-200. , https://doi.org/10.1016/0040-1951(95)00064-X
  • Ramos, V.A., Cristallini, E., Pérez, D., The Pampean flat-slab of the Central Andes (2002) Journal of South American Earth Sciences, 15 (1), pp. 59-78. , https://doi.org/10.1016/S0895-9811(02)00006-8
  • Ramos, V.A., Zapata, T., Cristallini, E., Introcaso, A., The Andean thrust system: Latitudinal variations in structural styles and orogenic shortening (2004) Thrust Tectonics and Hydrocarbon Systems, pp. 30-50. , #x0026;, In K. R. McClay (Ed.),, American Association of Petroleum Geologists Special Volume Memoir 82, Boulder, Tulsa, AAP
  • Reiners, P.W., Brandon, M.T., Using Thermochronology to understand orogenic erosion (2006) Annual Review of Earth and Planetary Sciences, 34 (1), pp. 419-466. , https://doi.org/10.1146/annurev.earth.34.031405.125202
  • Reiners, P.W., Farley, K.A., Influence of crystal size on apatite (U–Th)/He thermochronology: An example from the Bighorn Mountains, Wyoming (2001) Earth and Planetary Science Letters, 188 (3-4), pp. 413-420. , https://doi.org/10.1016/S0012-821X(01)00341-7
  • Reiners, P.W., Zhou, Z., Ehlers, T.A., Xu, C., Brandon, M.T., Donelick, R.A., Nicolescu, S., Post orogenic evolution of the Dabie Shan, eastern China, from (U–Th)/He and fission-track thermochronology (2003) American Journal of Science, 303 (6), pp. 489-518. , https://doi.org/10.2475/ajs.303.6.489
  • Rodríguez, M., (2013) Cenozoic uplift and exhumation above the southern part of the flat-slab subduction segment of Chile (28.5–32°S), , (PhD thesis). Chile Universidad de Chile
  • Rodríguez, M.P., Aguilar, G., Urresty, C., Charrier, R., Neogene landscape evolution in the Andes of north-central Chile between 28 and 32°S: Interplay between tectonic and erosional processes (2015) Geodynamic Processes in the Andes of Central Chile and Argentina, pp. 419-446. , #x0026;, In, S. A. Sepúlveda, (Eds.),, Geological Society of London Special Publication, 39
  • Rossel, K., Aguilar, G., Salazar, E., Martinod, J., Carretier, S., Pinto, L., Cabre, A., Chronology of Chilean Frontal Cordillera building from geochronological, stratigraphic and geomorphological data insights from Miocene intramontane-basin deposits (2016) Basin Research, 28, pp. 1-22. , https://doi.org/10.1111/bre.12221
  • Rossel, P., Oliveros, V., Ducea, M.N., Charrier, R., Scaillet, S., Retamal, L., Figueroa, O., The Early Andean subduction system as an analogue to island arcs: Evidence from across-arc geochemical variations in northern Chile (2013) Lithos, 179, pp. 211-230. , https://doi.org/10.1016/j.lithos.2013.08.014
  • Salazar, E., Coloma, F., (2016) Geología del Área Cerros de Cantaritos-Laguna Chica, , #x0026;, Región de Atacama, Chile, Carta Geológica de Chile (scale 1 100,000). Chile Serv. Nac. Geol. Min
  • Salazar, E., Coloma, F., Creixell, C., (2013) Área el Tránsito-Lagunillas, Región de Atacama, Carta geológica de Chile, Serie Geología Básica (sheet 150, scale 1: 100,000), , #x0026;, Santiago, Chile Serv. Nac. Geol. Min
  • Sánchez, M., Winocur, D., Álvarez, O., Folguera, A., Martinez, M.P., Crustal structure of the high Andes in the North Pampean flat slab segment from magmatic and gravity data (2017) Journal of South American Earth Sciences, 73, pp. 153-167. , https://doi.org/10.1016/j.jsames.2016.12.007
  • Sdrolias, M., Muller, R.D., Controls on back-arc basin formation (2006) Geochemistry, Geophysics, Geosystems, 7. , https://doi.org/10.1029/2005GC001090
  • Siame, L.L., Bellier, O., Sebrier, M., Active tectonics in the Argentine Precordillera and Western Sierras Pampeanas (2006) Revista de la Asociación Geológica Argentina, 61, pp. 604-619
  • Sobolev, S.V., Babeyko, A.Y., What drives orogeny in the Andes? (2005) Geology, 33 (8), pp. 617-620. , https://doi.org/10.1130/G21557.1
  • Somoza, R., Updated Nazca (Farallon)-South America relative motions during the last 40 My: Implications for mountain building in the central Andean region (1998) Journal of South American Earth Sciences, 11 (3), pp. 211-215. , https://doi.org/10.1016/S0895-9811(98)00012-1
  • Somoza, R., Ghidella, M.E., Convergencia en el margen occidental de América del Sur durante el Cenozoico: Subducción de las placas Nazca, Farallón y Aluk (2005) Revista de la Asociación Geológica Argentina, 60 (4), pp. 97-809
  • Steinmann, G., (1929) Geologie von Peru: Heidelberg, p. 448. , Germany, Karl Winte
  • Stüwe, K., White, L., Brown, R., The influence of eroding topography on steady-state isotherms; application to fission track analysis (1994) Earth and Planetary Science Letters, 124 (1-4), pp. 63-74. , https://doi.org/10.1016/0012-821X(94)00068-9
  • Suriano, J., Mardonez, D., Lossada, A., Mahoney, B., Mescua, J., Giambiagi, L., Buelow, E., (2016) Stratigraphic stages of Bermejo basin: New insights from sedimentology and U/Pb dating, , Paper presented at GSA General Meeting, Denver
  • Suriano, J., Mardonez, D., Mahoney, J.B., Mescua, J.F., Giambiagi, L., Kimbrough, D., Lossada, A., Uplift sequence of the Andes at 30°S: Insights from sedimentology and U/Pb dating of synorogenic deposits (2017) Journal of South American Earth Sciences, 75, pp. 11-34. , https://doi.org/10.1016/j.jsames.2017.01.004
  • Tapia, F., Farías, M., Naipauer, M., Puratich, J., Late Cenozoic contractional evolution of the current arc-volcanic región along the southern Central Andes (35°20′S) (2015) Journal of Geodynamics, 88, pp. 36-51. , https://doi.org/10.1016/j.jog.2015.01.001
  • Tassara, A., Yanez, G., Relationship between elastic thickness and the tectonic segmentation of the Andean margin (2003) Revista Geologica de Chile, 30 (2), pp. 159-186
  • Thiele, R., (1964) Reconocimiento geológico de la Alta Cordillera de Elqui, pp. 1-73. , Publicaciones 27, Santiago, Universidad de Chile, Departamento de Geologí
  • Velásquez, R., Merino, R.N., Murillo, I., Ortiz, M., Alvarez, J., (2015) Naturaleza del Complejo Metamórfico El Cepo, Cordillera Frontal 29°-30°S, Chile: Petrología y geocronología, , #x0026;, Paper presented at XIVth Congreso Geológico Chileno, La Serena, Chile
  • Winocur, D.A., Litvak, V.D., Ramos, V.A., Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, Main Andes of Argentina and Chile: Evidence for generalized extension (2015) Geodynamic Processes in the Andes of Central Chile and Argentina, pp. 131-154. , #x0026;, In, S. A. Sepúlveda, (Eds.),, Geological Society of London Special Publication, 39
  • Winocur, D.A., Ramos, V.A., (2015) Inicio de Inversión tectónica en la cuenca Doña Ana, 29°-30°LS, Cordillera Frontal, Argentina, , #x0026;, Paper presented at XIVth Congreso Geológico Chileno, La Serena, Chile
  • Yáñez, G., Cembrano, J., Role of viscous plate coupling in the late Tertiary Andean tectonics (2004) Journal of Geophysical Research, 109. , https://doi.org/10.1029/2003JB002494
  • Yáñez, G., Ranero, R., von Huene, R., Díaz, J., Magnetic anomaly interpretation across the southern central Andes (32°-34°): The role of the Juan Fernández Ridge in the late Tertiary evolution of the margin (2001) Journal of Geophysical Research, 106 (B4), pp. 6325-6345. , https://doi.org/10.1029/2000JB900337
  • Yrigoyen, M., Los depósitos sinorogénicos terciarios (1993) Geología y Recursos Naturales de Mendoza, pp. 123-148. , In, V. Ramos, (Ed.),, XII Congreso Geológico Argentino y II Congreso Exploración de Hidrocarburos, Buenos Aires, Asoc. Geol. Ar

Citas:

---------- APA ----------
Lossada, A.C., Giambiagi, L., Hoke, G.D., Fitzgerald, P.G., Creixell, C., Murillo, I., Mardonez, D.,..., Suriano, J. (2017) . Thermochronologic Evidence for Late Eocene Andean Mountain Building at 30°S. Tectonics, 36(11), 2693-2713.
http://dx.doi.org/10.1002/2017TC004674
---------- CHICAGO ----------
Lossada, A.C., Giambiagi, L., Hoke, G.D., Fitzgerald, P.G., Creixell, C., Murillo, I., et al. "Thermochronologic Evidence for Late Eocene Andean Mountain Building at 30°S" . Tectonics 36, no. 11 (2017) : 2693-2713.
http://dx.doi.org/10.1002/2017TC004674
---------- MLA ----------
Lossada, A.C., Giambiagi, L., Hoke, G.D., Fitzgerald, P.G., Creixell, C., Murillo, I., et al. "Thermochronologic Evidence for Late Eocene Andean Mountain Building at 30°S" . Tectonics, vol. 36, no. 11, 2017, pp. 2693-2713.
http://dx.doi.org/10.1002/2017TC004674
---------- VANCOUVER ----------
Lossada, A.C., Giambiagi, L., Hoke, G.D., Fitzgerald, P.G., Creixell, C., Murillo, I., et al. Thermochronologic Evidence for Late Eocene Andean Mountain Building at 30°S. Tectonics. 2017;36(11):2693-2713.
http://dx.doi.org/10.1002/2017TC004674