Artículo

González, B.; Torres, O.V.; Jayanthi, S.; Gomez, N.; Sosa, M.H.; Bernardi, A.; Urbano, F.J.; García-Rill, E.; Cadet, J.-L.; Bisagno, V. "The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors" (2019) Progress in Neuro-Psychopharmacology and Biological Psychiatry. 88:222-234
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

METH use causes neuroadaptations that negatively impact the prefrontal cortex (PFC) leading to addiction and associated cognitive decline in animals and humans. In contrast, modafinil enhances cognition by increasing PFC function. Accumulated evidence indicates that psychostimulant drugs, including modafinil and METH, regulate gene expression via epigenetic modifications. In this study, we measured the effects of single-dose injections of modafinil and METH on the protein levels of acetylated histone H3 (H3ac) and H4ac, deacetylases HDAC1 and HDAC2, and of the NMDA subunit GluN1 in the medial PFC (mPFC) of mice euthanized 1 h after drug administration. To test if dopamine (DA) receptors (DRs) participate in the biochemical effects of the two drugs, we injected the D1Rs antagonist, SCH23390, or the D2Rs antagonist, raclopride, 30 min before administration of METH and modafinil. We evaluated each drug effect on glutamate synaptic transmission in D1R-expressing layer V pyramidal neurons. We also measured the enrichment of H3ac and H4ac at the promoters of several genes including DA, NE, orexin, histamine, and glutamate receptors, and their mRNA expression, since they are responsive to chronic modafinil and METH treatment. Acute modafinil and METH injections caused similar effects on total histone acetylation, increasing H3ac and decreasing H4ac, and they also increased HDAC1, HDAC2 and GluN1 protein levels in the mouse mPFC. In addition, the effects of the drugs were prevented by pre-treatment with D1Rs and D2Rs antagonists. Specifically, the changes in H4ac, HDAC2, and GluN1 were responsive to SCH23390, whereas those of H3ac and GluN1 were responsive to raclopride. Whole-cell patch clamp in transgenic BAC-Drd1a-tdTomato mice showed that METH, but not modafinil, induced paired-pulse facilitation of EPSCs, suggesting reduced presynaptic probability of glutamate release onto layer V pyramidal neurons. Analysis of histone 3/4 enrichment at specific promoters revealed: i) distinct effects of the drugs on histone 3 acetylation, with modafinil increasing H3ac at Drd1 and Adra1b promoters, but METH increasing H3ac at Adra1a; ii) distinct effects on histone 4 acetylation enrichment, with modafinil increasing H4ac at the Drd2 promoter and decreasing it at Hrh1, but METH increasing H4ac at Drd1; iii) comparable effects of both psychostimulants, increasing H3ac at Drd2, Hcrtr1, and Hrh1 promoters, decreasing H3ac at Hrh3, increasing H4ac at Hcrtr1, and decreasing H4ac at Hcrtr2, Hrh3, and Grin1 promoters. Interestingly, only METH altered mRNA levels of genes with altered histone acetylation status, inducing increased expression of Drd1a, Adra1a, Hcrtr1, and Hrh1, and decreasing Grin1. Our study suggests that although acute METH and modafinil can both increase DA neurotransmission in the mPFC, there are similar and contrasting epigenetic and transcriptional consequences that may account for their divergent clinical effects. © 2018

Registro:

Documento: Artículo
Título:The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors
Autor:González, B.; Torres, O.V.; Jayanthi, S.; Gomez, N.; Sosa, M.H.; Bernardi, A.; Urbano, F.J.; García-Rill, E.; Cadet, J.-L.; Bisagno, V.
Filiación:Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Department of Behavioral Sciences, San Diego Mesa College, San Diego, California, United States
Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
Palabras clave:Dopamine receptors; Glutamate; Histone acetylation; Methamphetamine; Modafinil; Prefrontal cortex; 8 chloro 2,3,4,5 tetrahydro 3 methyl 5 phenyl 1h 3 benzazepin 7 ol hydrogen maleate; biological marker; dopamine receptor; glutamic acid; histone deacetylase 1; histone deacetylase 2; histone H3; histone H4; messenger RNA; methamphetamine; modafinil; n methyl dextro aspartic acid; n methyl dextro aspartic acid GluN1; raclopride; unclassified drug; benzazepine derivative; central stimulant agent; dopamine receptor; dopamine receptor stimulating agent; histone; histone deacetylase 1; methamphetamine; modafinil; raclopride; receptor; Adra1a gene; Adra1b gene; animal cell; animal experiment; animal tissue; Article; controlled study; DA gene; Drd1 gene; Drd2 gene; epigenetics; excitatory postsynaptic potential; gene; gene expression; glutamate receptor gene; glutamatergic synapse; Grin1 gene; Hcrtr1 gene; Hcrtr2 gene; histamine gene; histone acetylation; Hrh1 gene; Hrh3 gene; male; medial prefrontal cortex; mouse; NE gene; neurotransmission; nonhuman; orexin gene; promoter region; protein analysis; protein expression; protein function; pyramidal nerve cell; synaptic transmission; whole cell patch clamp; animal; C57BL mouse; chromatin immunoprecipitation; cytology; drug effect; genetic epigenesis; genetics; metabolism; nerve cell; patch clamp technique; physiology; prefrontal cortex; transgenic mouse; Animals; Benzazepines; Central Nervous System Stimulants; Chromatin Immunoprecipitation; Dopamine Agents; Epigenesis, Genetic; Excitatory Postsynaptic Potentials; Histone Deacetylase 1; Histones; Male; Methamphetamine; Mice; Mice, Inbred C57BL; Mice, Transgenic; Modafinil; Neurons; Patch-Clamp Techniques; Prefrontal Cortex; Raclopride; Receptors, Biogenic Amine; Receptors, Dopamine
Año:2019
Volumen:88
Página de inicio:222
Página de fin:234
DOI: http://dx.doi.org/10.1016/j.pnpbp.2018.07.019
Título revista:Progress in Neuro-Psychopharmacology and Biological Psychiatry
Título revista abreviado:Prog. Neuro-Psychopharmacol. Biol. Psychiatry
ISSN:02785846
CODEN:PNPPD
CAS:8 chloro 2,3,4,5 tetrahydro 3 methyl 5 phenyl 1h 3 benzazepin 7 ol hydrogen maleate, 87134-87-0; glutamic acid, 11070-68-1, 138-15-8, 56-86-0, 6899-05-4; methamphetamine, 28297-73-6, 51-57-0, 537-46-2, 7632-10-2; modafinil, 68693-11-8; n methyl dextro aspartic acid, 6384-92-5; raclopride, 84225-95-6; histone, 9062-68-4; Benzazepines; Central Nervous System Stimulants; Dopamine Agents; Histone Deacetylase 1; Histones; Methamphetamine; Modafinil; Raclopride; Receptors, Biogenic Amine; Receptors, Dopamine; SCH 23390
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02785846_v88_n_p222_Gonzalez

Referencias:

  • Ade, K.K., Wan, Y., Chen, M., Gloss, B., Calakos, N., An improved BAC transgenic fluorescent reporter line for sensitive and specific identification of striatonigral medium spiny neurons (2011) Front. Syst. Neurosci., 5, p. 32
  • Agricola, E., Verdone, L., Di Mauro, E., Caserta, M., H4 acetylation does not replace H3 acetylation in chromatin remodelling and transcription activation of Adr1-dependent genes (2006) Mol. Microbiol., 62, pp. 1433-1446
  • Alarcón, J.M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E.R., Barco, A., Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration (2004) Neuron, 42, pp. 947-959
  • Anaclet, C., Parmentier, R., Ouk, K., Guidon, G., Buda, C., Sastre, J.P., Akaoka, H., Lin, J.S., Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models (2009) J. Neurosci., 29, pp. 14423-14438
  • Andersen, P.H., Comparison of the pharmacological characteristics of [3H]raclopride and [3H]SCH 23390 binding to dopamine receptors in vivo in mouse brain (1988) Eur. J. Pharmacol., 146, pp. 113-120
  • Aracri, P., Banfi, D., Pasini, M.E., Amadeo, A., Becchetti, A., Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex (2015) Cereb. Cortex, 25, pp. 1330-1347
  • Arnsten, A.F., Mathew, R., Ubriani, R., Taylor, J.R., Li, B.M., Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function (1999) Biol. Psychiatry, 45, pp. 26-31
  • Baltan, S., Bachleda, A., Morrison, R.S., Murphy, S.P., Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia (2011) Transl Stroke Res, 2, pp. 411-423
  • Beaulieu, J.M., Gainetdinov, R.R., The physiology, signaling, and pharmacology of dopamine receptors (2011) Pharmacol. Rev., 63, pp. 182-217
  • Bernheim, A., See, R.E., Reichel, C.M., Chronic methamphetamine self-administration disrupts cortical control of cognition (2016) Neurosci. Biobehav. Rev., 69, pp. 36-48
  • Bisagno, V., González, B., Urbano, F.J., Cognitive enhancers versus addictive psychostimulants: the good and bad side of dopamine on prefrontal cortical circuits (2016) Pharmacol. Res., 109, pp. 108-118
  • Bordelon-Glausier, J.R., Khan, Z.U., Muly, E.C., Quantification of D1 and D5 dopamine receptor localization in layers I, III, and V of Macaca mulatta prefrontal cortical area 9: coexpression in dendritic spines and axon terminals (2008) J. Comp. Neurol., 508, pp. 893-905
  • Bourne, J.A., SCH 23390: the first selective dopamine D1-like receptor antagonist (2001) CNS Drug Rev., 7, pp. 399-414
  • Boutrel, B., Steiner, N., Halfon, O., The hypocretins and the reward function: what have we learned so far? (2013) Front. Behav. Neurosci., 7, p. 59
  • Cadet, J.L., Bisagno, V., The primacy of cognition in the manifestations of substance use disorders (2013) Front. Neurol., 4, p. 189
  • Campos, E.I., Reinberg, D., Histones: annotating chromatin (2009) Annu. Rev. Genet., 43, pp. 559-599
  • Cepeda, C., Levine, M.S., Where do you think you are going? The NMDA-D1 receptor trap (2006) Sci. STKE, 2006, p. 20
  • de Saint Hilaire, Z., Orosco, M., Rouch, C., Blanc, G., Nicolaidis, S., Variations in extracellular monoamines in the prefrontal cortex and medial hypothalamus after modafinil administration: a microdialysis study in rats (2001) Neuroreport, 12, pp. 3533-3537
  • Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., Tsai, L.H., Recovery of learning and memory is associated with chromatin remodelling (2007) Nature, 447, pp. 178-182
  • Gansen, A., Tóth, K., Schwarz, N., Langowski, J., Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure – a FRET study (2015) Nucleic Acids Res., 43, pp. 1433-1443
  • Gao, C., Wolf, M.E., Dopamine receptors regulate NMDA receptor surface expression in prefrontal cortex neurons (2008) J. Neurochem., 106, pp. 2489-2501
  • Goldman-Rakic, P.S., Leranth, C., Williams, S.M., Mons, N., Geffard, M., Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex (1989) Proc. Natl. Acad. Sci. U. S. A., 86, pp. 9015-9019
  • González, B., Rivero-Echeto, C., Muñiz, J.A., Cadet, J.L., García-Rill, E., Urbano, F.J., Bisagno, V., Methamphetamine blunts Ca(2+) currents and excitatory synaptic transmission through D1/5 receptor-mediated mechanisms in the mouse medial prefrontal cortex (2016) Addict. Biol., 21, pp. 589-602
  • González, B., Jayanthi, S., Gomez, N., Torres, O.V., Sosa, M.H., Bernardi, A., Urbano, F.J., Bisagno, V., Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex (2018) Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 82, pp. 1-11
  • González, B., Raineri, M., Cadet, J.L., García-Rill, E., Urbano, F.J., Bisagno, V., Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex ERK signaling in mice (2014) Neuropharmacology, 87, pp. 188-197. , (Dec)
  • Gonzalez-Islas, C., Hablitz, J.J., Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex (2003) J. Neurosci., 23, pp. 867-875
  • Gozzi, A., Colavito, V., Seke Etet, P.F., Montanari, D., Fiorini, S., Tambalo, S., Bifone, A., Bentivoglio, M., Modulation of fronto-cortical activity by modafinil: a functional imaging and fos study in the rat (2012) Neuropsychopharmacology, 37, pp. 822-837
  • Guan, J.S., Haggarty, S.J., Giacometti, E., Dannenberg, J.H., Joseph, N., Gao, J., Nieland, T.J., Tsai, L.H., HDAC2 negatively regulates memory formation and synaptic plasticity (2009) Nature, 459, pp. 55-60
  • Ishizuka, T., Murotani, T., Yamatodani, A., Modanifil activates the histaminergic system through the orexinergic neurons (2010) Neurosci. Lett., 483, pp. 193-196
  • Jayanthi, S., McCoy, M.T., Chen, B., Britt, J.P., Kourrich, S., Yau, H.J., Ladenheim, B., Cadet, J.L., Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms (2014) Biol. Psychiatry, 76, pp. 47-56
  • Kalechstein, A.D., De La Garza, R., 2nd., Newton, T.F., Modafinil administration improves working memory in methamphetamine-dependent individuals who demonstrate baseline impairment (2010) Am. J. Addict., 19, pp. 340-344
  • Kamei, H., Nagai, T., Nakano, H., Togan, Y., Takayanagi, M., Takahashi, K., Kobayashi, K., Yamada, K., Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice (2006) Biol. Psychiatry, 59, pp. 75-84
  • Krasnova, I.N., Justinova, Z., Cadet, J.L., Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways (2016) Psychopharmacology, 233, pp. 1945-1962
  • Kruse, M.S., Prémont, J., Krebs, M.O., Jay, T.M., Interaction of dopamine D1 with NMDA NR1 receptors in rat prefrontal cortex (2009) Eur. Neuropsychopharmacol., 19, pp. 296-304
  • Kurita, M., Holloway, T., García-Bea, A., Kozlenkov, A., Friedman, A.K., Moreno, J.L., Heshmati, M., González-Maeso, J., HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity (2012) Nat. Neurosci., 15, pp. 1245-1254
  • Lappalainen, J., Hietala, J., Koulu, M., Sjöholm, B., Syvälahti, E., Effects of acute administration of SCH 23390 on dopamine and serotonin turnover in major dopaminergic areas and mesencephalic raphe nuclei–comparison with ritanserin (1991) Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 15, pp. 861-872
  • Martin, T.A., Jayanthi, S., McCoy, M.T., Brannock, C., Ladenheim, B., Garrett, T., Lehrmann, E., Cadet, J.L., Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens (2012) PLoS ONE, 7
  • McGaugh, J., Mancino, M.J., Feldman, Z., Chopra, M.P., Gentry, W.B., Cargile, C., Oliveto, A., Open-label pilot study of modafinil for methamphetamine dependence (2009) J. Clin. Psychopharmacol., 29, pp. 488-491
  • Mereu, M., Bonci, A., Newman, A.H., Tanda, G., The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders (2013) Psychopharmacology, 229, pp. 415-434
  • Mieda, M., The roles of orexins in sleep/wake regulation (2017) Neurosci. Res., 118, pp. 56-65
  • Mitrano, D.A., Pare, J.F., Smith, Y., Weinshenker, D., D1-dopamine and α1-adrenergic receptors co-localize in dendrites of the rat prefrontal cortex (2014) Neuroscience, 258, pp. 90-100
  • Morris, M.J., Karra, A.S., Monteggia, L.M., Histone deacetylases govern cellular mechanisms underlying behavioral and synaptic plasticity in the developing and adult brain (2010) Behav. Pharmacol., 21, pp. 409-419
  • Munzar, P., Tanda, G., Justinova, Z., Goldberg, S.R., Histamine h3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release (2004) Neuropsychopharmacology, 29, pp. 705-717
  • Myrick, H., Malcolm, R., Taylor, B., Larowe, S., Modafinil: preclinical, clinical, and post-marketing surveillance–a review of abuse liability issues (2004) Ann. Clin. Psychiatry, 16, pp. 101-109
  • Committee on Guidelines for the Use of Animals in Neuroscience and Behavioral Research.Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research (2003), National Academies Press (US) Washington (DC) (0-309-08903-4); Nestler, E.J., Epigenetic mechanisms of drug addiction (2014) Neuropharmacology, 76, pp. 259-268
  • Qu, W.M., Huang, Z.L., Xu, X.H., Matsumoto, N., Urade, Y., Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil (2008) J. Neurosci., 28, pp. 8462-8469
  • Qu, W.M., Xu, X.H., Yan, M.M., Wang, Y.Q., Urade, Y., Huang, Z.L., Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice (2010) J. Neurosci., 30, pp. 4382-4389
  • Rasetti, R., Mattay, V.S., Stankevich, B., Skjei, K., Blasi, G., Sambataro, F., Arrillaga-Romany, I.C., Weinberger, D.R., Modulatory effects of modafinil on neural circuits regulating emotion and cognition (2010) Neuropsychopharmacology, 35, pp. 2101-2109
  • Renthal, W., Kumar, A., Xiao, G., Wilkinson, M., Covington, H.E., III, Maze, I., Sikder, D., Nestler, E.J., Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins (2009) Neuron, 62, pp. 335-348
  • Rogge, G.A., Wood, M.A., The role of histone acetylation in cocaine-induced neural plasticity and behavior (2013) Neuropsychopharmacology, 38, pp. 94-110
  • Santana, N., Artigas, F., Laminar and cellular distribution of monoamine receptors in rat medial prefrontal cortex (2017) Front. Neuroanat., 11, p. 87
  • Santana, N., Mengod, G., Artigas, F., Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors (2013) Int. J. Neuropsychopharmacol., 16, pp. 1139-1151
  • Scott, J.C., Woods, S.P., Matt, G.E., Meyer, R.A., Heaton, R.K., Atkinson, J.H., Grant, I., Neurocognitive effects of methamphetamine: a critical review and meta-analysis (2007) Neuropsychol. Rev., 17, pp. 275-297
  • Seamans, J.K., Durstewitz, D., Christie, B.R., Stevens, C.F., Sejnowski, T.J., Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 301-306
  • Stone, E.A., Cotecchia, S., Lin, Y., Quartermain, D., Role of brain alpha 1B-adrenoceptors in modafinil-induced behavioral activity (2002) Synapse, 46, pp. 269-270
  • Strahl, B.D., Allis, C.D., The language of covalent histone modifications (2000) Nature, 403, pp. 41-45
  • Sulzer, D., Sonders, M.S., Poulsen, N.W., Galli, A., Mechanisms of neurotransmitter release by amphetamines: a review (2005) Prog. Neurobiol., 75, pp. 406-433
  • Torres, O.V., McCoy, M.T., Ladenheim, B., Jayanthi, S., Brannock, C., Tulloch, I., Krasnova, I.N., Cadet, J.L., CAMKII-conditional deletion of histone deacetylase 2 potentiates acute methamphetamine-induced expression of immediate early genes in the mouse nucleus accumbens (2015) Sci. Rep., 5, p. 13396
  • Torres, O.V., Ladenheim, B., Jayanthi, S., McCoy, M.T., Krasnova, I.N., Vautier, F.A., Cadet, J.L., An Acute Methamphetamine Injection Downregulates the Expression of Several Histone Deacetylases (HDACs) in the Mouse Nucleus Accumbens: Potential Regulatory Role of HDAC2 Expression (2016) Neurotox. Res., 30, pp. 32-40
  • Trantham-Davidson, H., Neely, L.C., Lavin, A., Seamans, J.K., Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex (2004) J. Neurosci., 24, pp. 10652-10659
  • Vincent, S.L., Khan, Y., Benes, F.M., Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex (1993) J. Neurosci., 13, pp. 2551-2564
  • Volmar, C.H., Wahlestedt, C., Histone deacetylases (HDACs) and brain function (2015) Neuroepigenetics, V1, pp. 20-27
  • Wang, Z., Zang, C., Cui, K., Schones, D.E., Barski, A., Peng, W., Zhao, K., Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes (2009) Cell, 138, pp. 1019-1031
  • White, A.O., Rauhut, A.S., Time-dependent effects of prazosin on the development of methamphetamine conditioned hyperactivity and context-specific sensitization in mice (2014) Behav. Brain Res., 263, pp. 80-89
  • Williams, G.V., Castner, S.A., Under the curve: critical issues for elucidating D1 receptor function in working memory (2006) Neuroscience, 139, pp. 263-276
  • Wisor, J., Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions (2013) Front. Neurol., 4, p. 139
  • Xing, B., Li, Y.C., Gao, W.J., Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex (2016) Brain Res., 1641, pp. 217-233
  • Yao, W.D., Spealman, R.D., Zhang, J., Dopaminergic signaling in dendritic spines (2008) Biochem. Pharmacol., 75, pp. 2055-2069
  • Yao, Z.G., Zhang, L., Huang, L., Zhu, H., Liu, Y., Ma, C.M., Sheng, S.L., Qin, C., Regional and cell-type specific distribution of HDAC2 in the adult mouse brain (2013) Brain Struct. Funct., 218, pp. 563-573
  • Yu, Q., Olsen, L., Zhang, X., Boeke, J.D., Bi, X., Differential contributions of histone H3 and H4 residues to heterochromatin structure (2011) Genetics, 188, pp. 291-308
  • Zentner, G.E., Henikoff, S., Regulation of nucleosome dynamics by histone modifications (2013) Nat. Struct. Mol. Biol., 20, pp. 259-266
  • Zlomuzica, A., Viggiano, D., De Souza Silva, M.A., Ishizuka, T., Gironi Carnevale, U.A., Ruocco, L.A., Watanabe, T., Dere, E., The histamine H1-receptor mediates the motivational effects of novelty (2008) Eur. J. Neurosci., 27, pp. 1461-1474

Citas:

---------- APA ----------
González, B., Torres, O.V., Jayanthi, S., Gomez, N., Sosa, M.H., Bernardi, A., Urbano, F.J.,..., Bisagno, V. (2019) . The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 88, 222-234.
http://dx.doi.org/10.1016/j.pnpbp.2018.07.019
---------- CHICAGO ----------
González, B., Torres, O.V., Jayanthi, S., Gomez, N., Sosa, M.H., Bernardi, A., et al. "The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors" . Progress in Neuro-Psychopharmacology and Biological Psychiatry 88 (2019) : 222-234.
http://dx.doi.org/10.1016/j.pnpbp.2018.07.019
---------- MLA ----------
González, B., Torres, O.V., Jayanthi, S., Gomez, N., Sosa, M.H., Bernardi, A., et al. "The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors" . Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 88, 2019, pp. 222-234.
http://dx.doi.org/10.1016/j.pnpbp.2018.07.019
---------- VANCOUVER ----------
González, B., Torres, O.V., Jayanthi, S., Gomez, N., Sosa, M.H., Bernardi, A., et al. The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2019;88:222-234.
http://dx.doi.org/10.1016/j.pnpbp.2018.07.019