Conferencia

Tesler, F.; Tang, S.; Dobrosavljević, V.; Rozenberg, M.; Jaffres H.; Razeghi M.; Drouhin H.-J.; Wegrowe J.-E.; The Society of Photo-Optical Instrumentation Engineers (SPIE) "Shock waves in binary oxides memristors" (2017) Spintronics X Symposium. 10357
El editor no permite incluir ninguna versión del artículo en el Repositorio.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Progress of silicon based technology is nearing its physical limit, as minimum feature size of components is reaching a mere 5 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next generation electronics. Significant progress has already been made in the past decade and devices are beginning to hit the market; however, it has been mainly the result of empirical trial and error. Hence, gaining theoretical insight is of essence. In the present work we report a new connection between the resistive switching and shock wave formation, a classic topic of non-linear dynamics. We argue that the profile of oxygen ions that migrate during the commutation in insulating binary oxides may form a shock wave, which propagates through a poorly conductive region of the device. We validate the scenario by means of model simulations. © 2017 SPIE.

Registro:

Documento: Conferencia
Título:Shock waves in binary oxides memristors
Autor:Tesler, F.; Tang, S.; Dobrosavljević, V.; Rozenberg, M.; Jaffres H.; Razeghi M.; Drouhin H.-J.; Wegrowe J.-E.; The Society of Photo-Optical Instrumentation Engineers (SPIE)
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Cuidad Universitaria, Buenos Aires, 1428, Argentina
Department of Physics and Department of Statistics, Florida State University, Tallahassee, FL 32306, United States
Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, United States
Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay Cedex, 91405, France
Physics Department, University of California, San Diego, CA 92093, United States
Palabras clave:Memristors; Resistive Switching; Shock Waves; Bins; Magnetoelectronics; Memristors; Transition metal compounds; Transition metals; Minimum feature sizes; Model simulation; Non-linear dynamics; Resistive switching; Resistive switching behaviors; Silicon-based technology; Transition-metal oxides; Trial and error; Shock waves
Año:2017
Volumen:10357
DOI: http://dx.doi.org/10.1117/12.2277977
Título revista:Spintronics X Symposium
Título revista abreviado:Proc SPIE Int Soc Opt Eng
ISSN:0277786X
CODEN:PSISD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0277786X_v10357_n_p_Tesler

Referencias:

  • (2011) International Technology Road Map for Semiconductors, , http://www.itrs.net/
  • Rozenberg, M.J., (2011) Scholarpedia, 6, p. 11414. , http://dx.doi.org/10.4249/scholarpedia.11414
  • Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., The missing memristor found (2008) Nature, 453, pp. 80-83
  • Waser, R., Aono, M., Nanoionics-based resistive switching memories (2007) Nat. Mater, 6, p. 833
  • Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., Memristive switching mechanism for metal/oxide/metal nanodevices (2008) Nature Nanotechnol, 3, pp. 429-433
  • Waser, R., Dittmann, R., Staikov, G., Szot, K., (2009) Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials, 21 (6), pp. 2632-2663
  • Inoue, I.H., Sawa, A., (2013) Chapter 16 of Functional Metal Oxides New Science and Novel Applications, , Wiley-VCH, Germany (Eds. Ogale S, Venkatesan T, Blamire M)
  • Yang, J.J., Inoue, I.H., Mikolajick, T., Hwang, C.S., Metal oxide memories based on thermochemical and valence change mechanisms (2012) MRS Bulletin, 37 (2), pp. 131-137
  • Sawa, A., Resistive switching in transition metal oxides (2008) Materials Today, 11, pp. 28-36
  • Baikalov, A., Wang, Y.Q., Field-driven hysteretic and reversible resistive switch at the Ag-Pr 0.7 Ca 0.3 MnO 3 interface (2003) App. Phys. Lett, 83 (5), pp. 957-959
  • Stoliar, P., Levy, P., Sánchez, M.J., Leyba, A.G., Albornoz, A.C., Gomez-Marlasca, F., Zanini, A., Rozenberg, M.J., (2014) Nonvolatile Multilevel Resistive Switching Memory Cell: A Transition Metal Oxide-Based Circuit, Circuits and Systems II: Express Briefs, IEEE Transactions on, 61 (1), pp. 21-25
  • Alibart, F., Gao, L., Hoskins, B.D., Strukov, D.B., High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm (2012) Nanotechnology, 23 (7), p. 075201
  • Ghenzi, N., Sánchez, M.J., Gomez-Marlasca, F., Levy, P., Rozenberg, M.J., Hysteresis switching loops in ag-manganite memristive interfaces (2010) Journal of Applied Physics, 107, p. 093719
  • Nian, Y.B., Strozier, J., Wu, N.J., Chen, X., Ignatiev, A., Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides (2007) Physical Review Letters, 98, p. 146403
  • Chen, X., Wu, N.J., Strozier, J., Ignatiev, A., Direct resistance profile for an electrical pulse induced resistance change device (2005) Appl. Phys. Lett, 87, p. 233506
  • Larentis, S., Nardi, F., Balatti, S., Gilme, C., Ielmini, D., Resistive Switching by Voltage- Driven Ion Migration in Bipolar RRAM-Part II: Modeling (2011) IEEE Trans. Electron. Devices, 58, pp. 4309-4317
  • Menzel, S., Waters, M., Marchewka, A., Bottger, U., Dittmann, R., Waser, R., Origin of the Ultra- nonlinear Switching Kinetics in Oxide-Based Resistive Switches (2011) Adv. Funct. Mater, 21, pp. 4487-4492
  • Bocquet, M., Deleruyelle, D., Aziza, H., Muller, C., Portal, J.M., Cabout, T., Jalaguier, E., Robust Compact Model for Bipolar Oxide-Based Resistive Switching Memories (2014) IEEE Trans. Electron Devices, 61, pp. 674-681
  • Hur, J.H., Lee, M.J., Lee, C.B., Kim, Y.B., Kim, C.J., Modeling for bipolar resistive memory switching in transition-metal oxides (2010) Phys. Rev. B, 82, p. 155321
  • Huang, P., Liu, X.Y., Chen, B., Li, H.T., Wang, Y.J., Deng, Y.X., Wei, K.L., Kang, J.F., A Physics-Based Compact Model of Metal-Oxide-Based RRAM DC and AC Operations (2013) IEEE Trans. Electron Devices, 60, p. 4090
  • Noman, M., Jiang, W., Salvador, P.A., Skowronski, M., Bain, J.A., Computational investigations into the operating window for memristive devices based on homogeneous ionic motion (2011) Appl. Phys. A - Mater. Sci. Process, 102, pp. 877-883
  • Strukov, D.B., Borghetti, J.L., Williams, R.S., (2009) Coupled Ionic and Electronic Transport Model of Thin-Film Semiconductor Memristive Behavior, Small, 5, pp. 1058-1063
  • Lee, J.S., Lee, S.B., Kahng, B., Noh, T.W., Two opposite hysteresis curves in semiconductors with mobile dopants (2013) Appl. Phys. Lett, 102, pp. 2535031-2535034
  • Kim, S., Choi, S., Lu, W., Comprehensive Physical Model of Dynamic Resistive Switching in an Oxide Memristor (2014) ACS Nano, 8, pp. 2369-2376
  • Rozenberg, M.J., Inoue, I.H., Sanchez, M.J., Nonvolatile memory with multilevel switching: A basic model (2004) Phys. Rev. Lett, 92 (17), p. 178302
  • Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L., Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices, Electron Devices (2009) IEEE Transactions on, 56 (2), p. 186. , 192, Feb
  • Rozenberg, M.J., Sanchez, M.J., Weht, R., Acha, C., Gomez-Marlasca, F., Levy, P., Mechanism for bipolar resistive switching in transition-metal oxides (2010) Phys. Rev. B, 81, p. 115101
  • Tang, S., Tesler, F., Marlasca, F.G., Levy, P., Dobrosavljevic, V., Rozenberg, M.J., (2016) Shock Waves and Commutation Speed of Memristors Phys. Rev. X, 6, p. 011028
  • Ghenzi, N., Rozenberg, R., Llopis, M.J., Levy, P., Hueso, L.E., Rubi, D., Stoliar, P., Tuning the resistive switching properties of TiO2-x films (2015) Appl. Phys. Lett, 106, p. 123509
  • Debnath, L., (2011) Nonlinear Partial Differential Equations for Scientists and Engineers, , Birkhauser
  • Ld Landau, E.L., (1987) Fluid Mechanics, 6. , (Course Of Theoretical Physics) (Butterworth-HeinemannA4 - The Society of Photo-Optical Instrumentation Engineers (SPIE)

Citas:

---------- APA ----------
Tesler, F., Tang, S., Dobrosavljević, V., Rozenberg, M., Jaffres H., Razeghi M., Drouhin H.-J.,..., The Society of Photo-Optical Instrumentation Engineers (SPIE) (2017) . Shock waves in binary oxides memristors. Spintronics X Symposium, 10357.
http://dx.doi.org/10.1117/12.2277977
---------- CHICAGO ----------
Tesler, F., Tang, S., Dobrosavljević, V., Rozenberg, M., Jaffres H., Razeghi M., et al. "Shock waves in binary oxides memristors" . Spintronics X Symposium 10357 (2017).
http://dx.doi.org/10.1117/12.2277977
---------- MLA ----------
Tesler, F., Tang, S., Dobrosavljević, V., Rozenberg, M., Jaffres H., Razeghi M., et al. "Shock waves in binary oxides memristors" . Spintronics X Symposium, vol. 10357, 2017.
http://dx.doi.org/10.1117/12.2277977
---------- VANCOUVER ----------
Tesler, F., Tang, S., Dobrosavljević, V., Rozenberg, M., Jaffres H., Razeghi M., et al. Shock waves in binary oxides memristors. Proc SPIE Int Soc Opt Eng. 2017;10357.
http://dx.doi.org/10.1117/12.2277977