Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

There is a mid-latitude region to the East of the Andes Range in the Southern Hemisphere that exhibits ideal conditions for the generation of gravity waves (GW) by topography mainly during winter. The configuration favors the generation of wavefronts that are parallel to the North-South direction. Global Positioning System (GPS) radio occultation (RO) retrievals from the COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) mission exhibit in a large proportion of the soundings an orientation which should be favorable to the detection of these wavefronts. We try to verify if this GW activity surplus on the East with respect to the West in the studied zone in winter emerges clearly in the GPS RO data between years 2007 and 2012. We argue that the orientation of the soundings but also the mathematical model selected to represent the GW energy distribution can affect the possibility of detecting the signatures of the waves. In particular, we explore a new interpretation of the GW energy distribution observed by GPS RO at the lowest values, as they stay below the precision limit of the technique. We suggest to replace that part of the measured distribution by an exponential curve that in general suits the trend of all the other observed energies. In following this alternative it is shown that the calculated mountain wave activity in the studied sector is now even more clearly larger in the East than in the West during winter. Finally, we consider that energy distributions observed with any measurement technique should in general not be considered as the solely contribution from waves, as also other variable phenomena may be adding to the final outcome. © 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:An improvement of the sensitivity of GPS radio occultation data to detect gravity waves through observational and modeling factors
Autor:Alexander, P.; De La Torre, A.; Hierro, R.; Llamedo, P.
Filiación:Instituto de Física de Buenos Aires, CONICET, Ciudad Universitaria Pabellón 1, Buenos Aires, 1428, Argentina
Facultad de Ingeniería, Universidad Austral, Av. J. de Garay 125, Buenos Aires, 1063, Argentina
Palabras clave:Energy distribution; Gravity waves; Radio occultation; Cosmology; Electric power distribution; Gravity waves; Ionosphere; Radio; Wavefronts; Constellation observing system for meteorology; Energy distributions; Exponential curves; GPS radio occultations; Ionosphere and climates; Measurement techniques; Radio occultations; Southern Hemisphere; Global positioning system
Año:2016
Volumen:57
Número:2
Página de inicio:543
Página de fin:551
DOI: http://dx.doi.org/10.1016/j.asr.2015.10.047
Título revista:Advances in Space Research
Título revista abreviado:Adv. Space Res.
ISSN:02731177
CODEN:ASRSD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02731177_v57_n2_p543_Alexander

Referencias:

  • Alexander, M.J., Barnet, C., Using satellite observations to constrain parameterizations of gravity wave effects for global models (2007) J. Atmos. Sci., 64, p. 16521665
  • Alexander, P., De La Torre, A., Llamedo, P., Interpretation of gravity wave signatures in GPS radio occultations (2008) J. Geophys. Res., 113, p. D16117
  • Alexander, P., A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations (2010) Ann. Geophys., 28, pp. 587-595
  • Alexander, P., A method to improve the determination of wave perturbations close to the tropopause by using a digital filter (2011) Atmos. Meas. Tech., 4, pp. 1777-1784
  • Alexander, P., Luna, D., De La Torre, A., Schmidt, T., Distribution functions and statistical parameters that may be used to characterize limb sounders gravity wave climatologies in the stratosphere (2015) Adv. Space Res., 56, pp. 619-633
  • Alexander, S.P., Klekociuk, A.R., Tsuda, T., Gravity wave and orographic wave activity observed around the Antarctic and Arctic stratospheric vortices by the COSMIC GPS-RO satellite constellation (2009) J. Geophys. Res., 114, p. D17103
  • Baines, P.G., (1995) Topographic Effects in Stratified Fluids, , Cambridge Univ. Press New York 482pp
  • Baumgaertner, A., McDonald, A., A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations (2007) J. Geophys. Res., 112, p. D05103
  • De La Torre, A., Alexander, P., Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing? (2005) Geophys. Res. Lett., 32, p. L17815
  • De La Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., Wickert, J., Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? (2006) Geophys. Res. Lett., 33, p. L24810
  • Fraile, R., García-Ortega, E., Fitting an exponential distribution (2005) J. Appl. Meteorol., 44, pp. 1620-1625
  • Hajj, G.A., CHAMP and SAC-C atmospheric occultation results and intercomparisons (2004) J. Geophys. Res., 109, p. D06109
  • Hindley, N.P., Wright, C.J., Smith, N.D., Mitchell, N.J., The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO (2015) Atmos. Chem. Phys., 15, pp. 7797-7818
  • Jin, S.G., Feng, G.P., Gleason, S., Remote sensing using GNSS signals: Current status and future directions (2011) Adv. Space Res., 47, pp. 1645-1653
  • John, S.R., Kumar, K.K., A discussion on the methods of extracting gravity wave perturbations from space-based measurements (2013) Geophys. Res. Lett., 40, p. 24062410
  • Kececioglu, D.B., (2002) Reliability Engineering Handbook, 1, p. 720. , DEStech Publications, Lancaster (PA)
  • Kuo, Y.-H., Comparison of GPS radio occultation soundings with radiosondes (2005) Geophys. Res. Lett., 32, p. L05817
  • Kursinski, E., Observing earth's atmosphere with radio occultation measurements using the global positioning system (1997) J. Geophys. Res., 102, pp. 23429-23465
  • Llamedo, P., A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies (2009) Adv. Space Res., 44, p. 494500
  • Luna, D., Alexander, P., De La Torre, A., Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements (2013) Adv. Space Res., 52, pp. 879-882
  • Maccone, C., (2012) Mathematical SETI: Statistics, Signal Processing, Space Missions, , Springer Heidelberg 724pp
  • Marquardt, C., Healy, S., Measurement noise and stratospheric gravity wave characteristics obtained from GPS occultation data (2005) J. Meteorol. Soc. Jpn., 83, pp. 417-428
  • McDonald, A.J., Hertzog, A., Comparison of stratospheric measurements made by CHAMP radio occultation and Strateole/Vorcore in situ data (2008) Geophys. Res. Lett., 35, p. L11805
  • Parkin, T.B., Robinson, J.A., Statistical evaluation of median estimators for lognormally distributed variables (1993) Soil Sci. Soc. Am. J., 57, pp. 317-323
  • Ross, S.M., (2009) Introduction to Probability and Statistics for Engineers and Scientists, , fourth ed. Academic Press London 680pp
  • Sacha, P., Foelsche, U., Pisoft, P., Analysis of internal gravity waves with GPS RO density profiles (2014) Atmos. Meas. Tech., 7, p. 41234132
  • Wilson, R., Chanin, M.L., Hauchecarne, A., Gravity waves in the middle atmosphere observed by Rayleigh lidar 1. Case studies (1991) J. Geophys. Res., 96, pp. 5153-5167
  • Wu, D.L., Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques (2006) Adv. Space Res., 37, pp. 2269-2277
  • Zhang, S.D., Yi, F., Huang, C.M., Huang, K.M., High vertical resolution analyses of gravity waves and turbulence at a midlatitude station (2012) J. Geophys. Res., 117, p. D02103
  • Zhang, S.D., Yi, F., Huang, C.M., Huang, K.M., Gan, Q., Zhang, Y.H., Gong, Y., Latitudinal and altitudinal variability of lower atmospheric inertial gravity waves revealed by U.S radiosonde data (2013) J. Geophys. Res., 118, pp. 7750-7764

Citas:

---------- APA ----------
Alexander, P., De La Torre, A., Hierro, R. & Llamedo, P. (2016) . An improvement of the sensitivity of GPS radio occultation data to detect gravity waves through observational and modeling factors. Advances in Space Research, 57(2), 543-551.
http://dx.doi.org/10.1016/j.asr.2015.10.047
---------- CHICAGO ----------
Alexander, P., De La Torre, A., Hierro, R., Llamedo, P. "An improvement of the sensitivity of GPS radio occultation data to detect gravity waves through observational and modeling factors" . Advances in Space Research 57, no. 2 (2016) : 543-551.
http://dx.doi.org/10.1016/j.asr.2015.10.047
---------- MLA ----------
Alexander, P., De La Torre, A., Hierro, R., Llamedo, P. "An improvement of the sensitivity of GPS radio occultation data to detect gravity waves through observational and modeling factors" . Advances in Space Research, vol. 57, no. 2, 2016, pp. 543-551.
http://dx.doi.org/10.1016/j.asr.2015.10.047
---------- VANCOUVER ----------
Alexander, P., De La Torre, A., Hierro, R., Llamedo, P. An improvement of the sensitivity of GPS radio occultation data to detect gravity waves through observational and modeling factors. Adv. Space Res. 2016;57(2):543-551.
http://dx.doi.org/10.1016/j.asr.2015.10.047