Artículo

Schrijver, C.J.; Kauristie, K.; Aylward, A.D.; Denardini, C.M.; Gibson, S.E.; Glover, A.; Gopalswamy, N.; Grande, M.; Hapgood, M.; Heynderickx, D.; Jakowski, N.; Kalegaev, V.V.; Lapenta, G.; Linker, J.A.; Liu, S.; Mandrini, C.H.; Mann, I.R.; Nagatsuma, T. (...) Vilmer, N. "Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS" (2015) Advances in Space Research. 55(12):2745-2807
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun-Earth system observatory. But the domain of space weather is vast - extending from deep within the Sun to far outside the planetary orbits - and the physics complex - including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 h ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solarwind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. An executive summary provides an overview of all recommendations. © 2015 COSPAR.

Registro:

Documento: Artículo
Título:Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS
Autor:Schrijver, C.J.; Kauristie, K.; Aylward, A.D.; Denardini, C.M.; Gibson, S.E.; Glover, A.; Gopalswamy, N.; Grande, M.; Hapgood, M.; Heynderickx, D.; Jakowski, N.; Kalegaev, V.V.; Lapenta, G.; Linker, J.A.; Liu, S.; Mandrini, C.H.; Mann, I.R.; Nagatsuma, T.; Nandy, D.; Obara, T.; O'Brien, T.P.; Onsager, T.; Opgenoorth, H.J.; Terkildsen, M.; Valladares, C.E.; Vilmer, N.
Filiación:Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, CA 94304, United States
Finnish Meteorological Institute, Helsinki, FI-00560, Finland
University College London, Dept. of Physics and Astronomy, Gower Street, London, WC1E 6BT, United Kingdom
Instituto Nacional de Pesquisas Espaciais, S. J. Campos, SP, Brazil
HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000, United States
RHEA System and ESA SSA Programme Office, Darmstadt, 64293, Germany
NASA Goddard Space Flight Center, Greenbelt, MD, United States
Univ. of Aberystwyth, Penglais, STY23 3B, United Kingdom
RAL Space and STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, United Kingdom
DH Consultancy BVBA, Diestsestraat 133/3, Leuven, 3000, Belgium
German Aerospace Center, Kalkhorstweg 53, Neustrelitz, 17235, Germany
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
KU Leuven, Celestijnenlaan 200B, Leuven, 3001, Belgium
Predictive Science Inc., San Diego, CA 92121, United States
National Space Science Center, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
Instituto de Astronomia y Fisica del Espacio, Buenos Aires, C1428ZAA, Argentina
Dept. of Physics, Univ. Alberta, Edmonton, AB T6G 2J1, Canada
Space Weather and Environment Informatics Lab, National Inst. of Information and Communications Techn, Tokyo, 184-8795, Japan
Center for Excellence in Space Sciences, Indian Institute of Science, Education and Research, Kolkata, Mohanpur, 74125, India
Planetary Plasma and Atmospheric Research Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, 980-8578, Japan
Space Science Department/Chantilly, Aerospace Corporation, Chantilly, VA 20151, United States
NOAA Space Weather Prediction Center, Boulder, CO 80305, United States
Swedish Institute of Space Physics, Uppsala, 75121, Sweden
Space Weather Services, Bureau of Meteorology, Surry Hills, NSW, Australia
Institute for Scientific Research, Boston College, Newton, MA 02459, United States
LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, 5 place Jules Janssen, Meudon, 92195, France
Palabras clave:COSPAR/ILWS road map panel; Space weather; Distributed computer systems; Earth (planet); Environmental design; Observatories; Orbits; Specifications; Storms; Sun; Environmental conditions; Environmental specifications; Geomagnetically induced currents; Observation-based model; Observation-driven models; Road-maps; Space weather; Technological infrastructure; Weather forecasting
Año:2015
Volumen:55
Número:12
Página de inicio:2745
Página de fin:2807
DOI: http://dx.doi.org/10.1016/j.asr.2015.03.023
Título revista:Advances in Space Research
Título revista abreviado:Adv. Space Res.
ISSN:02731177
CODEN:ASRSD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02731177_v55_n12_p2745_Schrijver

Referencias:

  • (2011) Satellite Navigation and Space Weather: Understanding the Vulnerability and Building Resilience, , AMS
  • Bk-Stes'licka, U., Gibson, S.E., Fan, Y., Bethge, C., Forland, B., Rachmeler, L.A., The magnetic structure of solar prominence cavities: New observational signature revealed by coronal magnetometry (2013) ApJL, 770, p. L28. , http://dx.doi.org/10.1088/2041-8205/770/2/L28, arXiv:1304.7388
  • Barbieri, L.P., Mahmot, R.E., October-November 2003's space weather and operations lessons learned (2004) Space Weather, 2, p. 9002. , http://dx.doi.org/10.1029/2004SW000064
  • Beer, J., Astrophysical influences on planetary climate systems (2010) Heliophysics III: Evolving Solar Activity and the Climates of Space and Earth. Cambridge, , In: Schrijver, C.J., Siscoe, G.L. (Eds.) University Press
  • Bisi, M.M., Jackson, B.V., Hick, P.P., Buffington, A., Clover, J.M., Tokumaru, M., Fujiki, K., Three-dimensional reconstructions and mass determination of the 2008 June 2 LASCO coronal mass ejection using STELab interplanetary scintillation observations (2010) ApJL, 715, pp. L104-L108. , http://dx.doi.org/10.1088/2041-8205/715/2/L104
  • Boteler, D.H., Pirjola, R.J., Nevanlinna, H., The effects of geomagnetic disturbances on electrical systems at Earth's surface (1998) Adv. Space Res., 22, pp. 17-27
  • Burke, W.J., Weimer, D.R., Maynard, N.C., (1999) JGR, 104, pp. 9989-9994. , Committee on a Decadal Strategy for Solar and Space Physics, 2012. Solar and Space Physics: A Science for a Technological Society. National Research Council, Washington, DC
  • (1999) United Nations/Austria symposium on Space Weather Data, Instruments and Models: Looking Beyond the International Space Weather Initiative, , 2013. Report on the Report of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space, Vienna, 19-30 July (United Nations publication, Sales No. E.00.I.3) (chap. I, resolution 1, sect. I, para. 1 (e)(ii), and chap. II, para. 409 (d)(i)). Committee on the Peaceful Uses of Outer Space, 2014. Working report of expert group C: Space weather. United Nations. A/AC.105/C.1/2014/CRP.15
  • (2010) Weather Research and Research-to-Operations Activities, , When Weather Matters: Science and Service to Meet Critical Societal Needs. National Research Council, Washington, DC
  • DeRosa, M., Schrijver, C., Barnes, G., Leka, K., Lites, B., Aschwanden, M., Amari, T., Tadesse, T., A critical assessment of the feasibility of nonlinear force-free field modeling of the solar corona (2009) ApJ, 696, pp. 1780-1791
  • (2011) Geomagnetic Storms: An Evaluation of Risks and Risk Assessments, , US Department of Homeland Security, Washington, DC
  • (2013) Order No.779: Reliability Standards for Geomagnetic Disturbances, , FERC, US Federal Energy Regulatory Committee
  • (2013) Charter on Open Data Signed by G8 Leaders to Promote Transparency, Innovation and Accountability, , https://www.gov.uk/government/publications/open-data-charter, G8 Communiqué, UK Cabinet Office, UK presidency of the G8, 2013
  • Gaunt, C.T., Reducing uncertainty - An electricity utility response to severe solar storms (2013) J. Space Weather Space Clim., 4, p. A01. , http://dx.doi.org/10.1051/swsc/2013058
  • Hapgood, M., Lloyd's 360 risk insight: Space weather: Its impacts on earth and the implications for business (2011) Adv. Space Res., 47, pp. 2059-2072. , http://dx.doi.org/10.1016/j.asr.2010.02.007, Lloyd's, London, UK. Hapgood, M.A., 2011b. Towards a scientific understanding of the risk from extreme space weather
  • Hewish, A., The irregular structure of the outer regions of the solar corona (1955) R. Soc. London Proc. Ser. A, 228, pp. 238-251. , http://dx.doi.org/10.1098/rspa.1955.0046
  • Hewish, A., Scott, P.F., Wills, D., Interplanetary scintillation of small diameter radio sources (1964) Nature, 203, pp. 1214-1217. , http://dx.doi.org/10.1038/2031214a0
  • Agency, I.E., (2013) Key World Energy Statistics. IEA. JASON, , 2011. Impacts of Severe Space Weather on the Electric Grid (JSR-11-320). The MITRE Corporation, McLean, VA
  • Kovaltsov, G.A., Usoskin, I.G., Occurrence probability of large solar energetic particle events: Assessment from data on cosmogenic radionuclides in lunar rocks (2014) Solar Phys, 289 (1), pp. 211-220
  • Krausmann, E., (2011) The Space-Weather Awareness Dialogue: Findings and Outlook, , JRC Scientific and Technical Reports, European Commission, Joint Research Center Ispra, Italy
  • Krauss-Varban, D., Particle acceleration in shocks (2010) Heliophysics II: Space Storms and Radiation: Causes and Effects, , In: Schrijver, C.J., Siscoe, G.L. (Eds.) Cambridge University Press
  • Langhoff, S., Straume, T., (2012) Workshop Report on Space Weather Risks and Society, , NASA/CP-2012-216003, NASA Center for AeroSpace Information, Hanover, MD
  • (2013) Solar Storm Risk to the North American Electric Grid, , Solar Storm Risk to the North American Electric Grid Lloyd's, Lloyd's, London, UK
  • Malanushenko, A., Schrijver, C.J., DeRosa, M.L., Wheatland, M.S., Using coronal loops to reconstruct the magnetic field of an active region before and after a major flare (2014) ApJ, 783, p. 102. , http://dx.doi.org/10.1088/0004-637X/783/2/102, arxiv: 1312.5389
  • (2013) Global Trends 2013: Alternative Worlds, , NIC
  • (2012) Special Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the Bulk Power System, , NERC, North American Electric Reliability Corporation
  • (2013) Application Guide: Computing Geomagnetically-Induced Current in the Bulk-Power System, , NERC North American Electric Reliability Corporation
  • (2013) Geomagnetic Disturbance Planning Guide, , NERC North American Electric Reliability Corporation
  • Newell, P., Sotirelis, T., Liou, K., Meng, C.I., Rich, F.J., A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables (2007) JGR, 112. , 10:1029/2006JA012015
  • (2011) Geomagnetic Storms, , Organization for the Economic Cooperation and Development, OECD/iFP futures project on 'Future global shocks'
  • Pham, N., (2011) The Economic Benefits of Commercial GPS use in the US and the Costs Of Potential Disruption, , NDP consulting
  • (2013) 2013 World Population Data Sheet, , Population Reference Bureau PRB
  • Rodgers, D., Coates, A., Johnstone, A., Daly, E., Correlation of Meteosat-3 anomalies with data from the space environment monitor (1998) Space Weather, pp. 301-306. , (ESA Workshop). European Space Agency
  • (2013) Extreme Space Weather: Impacts on Engineered Systems and Infrastructure, , RAE
  • (2013) State of the Satellite Industry Report, , SIA
  • Schrijver, C.J., Beer, J., Space weather from explosions on the Sun: How bad could it be? (2014) EOS Trans., 95, pp. 201-202. , http://dx.doi.org/10.1002/2014EO240001
  • Schrijver, C.J., Mitchell, S.D., Disturbances in the US electric grid associated with geomagnetic activity (2013) J. Space Weather Space Clim., 3, p. A19. , http://dx.doi.org/10.1051/swsc/2013041, arXiv: 1304.5489
  • Schrijver, C., Rabanal, J.P., A survey of customers of space weather information (2013) Space Weather J., 11, pp. 529-541
  • Schrijver, C.J., Dobbins, R., Murtagh, W., Petrinec, S.M., Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment (2014) Space Weather, 12, pp. 487-498. , http://dx.doi.org/10.1002/2014SW001066, arXiv: 1406.7024
  • Den Bäumen, H., Moran, D., Lenzen, M., Cairns, I., Steenge, A., How severe space weather can disrupt global supply chains (2014) Nat. Hazards Earth Syst. Sci., 14, pp. 2749-2759. , Schulte in
  • (2008) Severe Space Weather Events - Understanding Societal and Economic Impacts., , Space Studies Board National Academy Press, Washington, DC, USA
  • Trichtchenko, L., Kalugin, G., Armitage, J., Boudjemline, K., Waller, D., (2013) Feasibility Study of using Muon Observations for Extreme Space Weather Early Warning, , (final report). Geological Survey of Canada 7451
  • Weimer, D.R., King, J.H., (2008) JGR (Space Physics), 113, p. A7. , Cite ID A07106
  • (2013) Global Risks 2013, , eighth ed. WEF

Citas:

---------- APA ----------
Schrijver, C.J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A., Gopalswamy, N.,..., Vilmer, N. (2015) . Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS. Advances in Space Research, 55(12), 2745-2807.
http://dx.doi.org/10.1016/j.asr.2015.03.023
---------- CHICAGO ----------
Schrijver, C.J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A., et al. "Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS" . Advances in Space Research 55, no. 12 (2015) : 2745-2807.
http://dx.doi.org/10.1016/j.asr.2015.03.023
---------- MLA ----------
Schrijver, C.J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A., et al. "Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS" . Advances in Space Research, vol. 55, no. 12, 2015, pp. 2745-2807.
http://dx.doi.org/10.1016/j.asr.2015.03.023
---------- VANCOUVER ----------
Schrijver, C.J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A., et al. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS. Adv. Space Res. 2015;55(12):2745-2807.
http://dx.doi.org/10.1016/j.asr.2015.03.023